K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)

Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)

\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Ta có :

+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)

+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)

Vậy...

b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)

Ta có : 

\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)

\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n 

Vậy...

29 tháng 1 2021

tm là gì v

18 tháng 2 2022

a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 41-1
n-3-5

b, đk n khác 4

Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\)

n + 5 - n - 4 = 1 => d = 1 

Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4 

 

 

19 tháng 5 2021

tụi bay là ai

AH
Akai Haruma
Giáo viên
7 tháng 9

Lời giải:

a. Để phân số đã cho có giá trị nguyên thì:

$n+9\vdots n-6$

$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$

Mà $n>6$ nên $n-6>0$

$\Rightarrow n-6\in\left\{1;3;5;15\right\}$

$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$

b.

Gọi $d=ƯCLN(n+9, n-6)$

$\Rightarrow n+9\vdots d; n-6\vdots d$

$\Rightarrow (n+9)-(n-6)\vdots d$

$\Rightarrow 15\vdots d$

Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$

Điều này xảy ra khi: 

$n-6\not\vdots 3; n-6\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$

$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.

1 tháng 5 2017

\(A=\frac{3n-2}{n-1}=\frac{3n-3+2}{n-1}=\frac{3.\left(n-1\right)+1}{n-1}=3+\frac{1}{n-1}\)

Để A là số nguyên thì n - 1 là ước nguyên của 1

\(n-1=1\Rightarrow n=2\)

\(n-1=-1\Rightarrow n=0\)

Ai thấy đúng thì ủng hộ nha !!!

1 tháng 5 2017

Ta có A= 3n-2/ n-1 = 3n-3+1/ n-1 = 3(n-1)/n-1 + 1/n-1 = 3+ 1/n-1

để A thuộc Z = > 3 + 1/n-1 thuộc z => 1/n-1 thuộc Z => 1 chia hết cho n-1 => (n-1) thuộc Ư(1)

=> n-1 thuộc {-1;1}

=> n thuộc {0; 2}

1 tháng 5 2021

a) n+9n−6=n−6+15n−6=1+15n−6n+9n−6=n−6+15n−6=1+15n−6

Để phân số có giá trị là số tự nhiên điều kiện là: 

n−6∈Ư(15)={1;3;5;15}n−6∈Ư(15)={1;3;5;15}vì n > 6 

=> n∈{7;9;11;21}n∈{7;9;11;21} thỏa mãn

b) Đặt:  (n+9;n−6)=d(n+9;n−6)=d với d là số tự nhiên 

=> \hept{n+9⋮dn−6⋮d⇒15⋮d\hept{n+9⋮dn−6⋮d⇒15⋮d=> d∈Ư(15)={1;3;5;15}d∈Ư(15)={1;3;5;15}

Với d = 3 => \hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3\hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3=> Tồn tại  số tự nhiên k để n = 3k ( k>2)

Với d = 5 => \hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5\hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5=> Tồn tại stn h để: n + 4 = 5 h <=> n = 5h - 4 ( h > 2)

Do đó để phân số trên là tốn giản 

<=> d = 1 =>  n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2

Vậy  n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản