Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
\(\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{49.51}\)
\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=3\left(1-\frac{1}{51}\right)\)
\(=3.\frac{50}{51}\)
Chúc bn hok tốt
\(\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\frac{6}{5\cdot7}+...+\frac{6}{49\cdot51}\)
\(=3\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=3\left(1-\frac{1}{51}\right)\)
\(=3\cdot\frac{50}{51}\)
\(=\frac{50}{17}\)
S = 1 x 3 + 2 x 4 + 3 x 5 + 4 x6 + ...+ 49 x 51 + 50 x 52
S = ( 1 x3 + 3 x5 + ..+ 49x51) + (2x4+4x6+...+50x52)
Đặt A = 1x3+3x5+...+49x51
=> 6A = 1x3x6+3x5x6+...+49x51x6
6A = 1x3x(5+1) + 3x5x(7-1) + ...+ 49x51x(53-47)
6A = 1x3x5 + 1x3 + 3x5x7 - 1x3x5 + ...+ 49x51x53 - 47x49x51
6A = (1x3 + 1x3x5 + 3x5x7+...+49x51x53) - (1x3x5+...+47x49x51)
6A = 1x3 + 49x51x53
A = 22 075
Tương tự như trên ta có: B = 2x4 + 4x6 + ...+ 50x52
B = 23 400
Thay B ;A vào S
S = 22 075 +23 400
S = 45 475
D = 2 . 3 + 4 . 5 + 6. 7 + ... + 50 . 51 = 150,850
E = 1 . 99 + 2 . 98 + 3 . 97 + ... + 49 . 51 + 50 .50 = 82,464
Tick nha
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(=3.\left(\frac{1}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\right)\)
\(=3.\frac{1}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{3}\left(1-\frac{1}{51}\right)\)
\(=\frac{50}{51}\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
\(1+3+5+7+...+\left(2n-1\right)=n^2\)
\(2+4+6+8+...+2n=n\left(n+1\right)\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+\frac{2}{18\cdot19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\cdot\frac{189}{380}=\frac{189}{760}\)
\(C=\frac{52}{1\cdot6}+\frac{52}{6\cdot11}+\frac{52}{11\cdot16}+...+\frac{52}{31\cdot36}\)
\(C=\frac{52}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{6}{31\cdot36}\right)\)
\(C=\frac{52}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(C=\frac{52}{5}\cdot\left(1-\frac{1}{36}\right)\)
\(C=\frac{91}{9}\)
A = 1 - 3 + 5 - 7 + ... + 49 - 51 + 52
Đặt B = 1 - 3 + 5 - 7 + ... + 49 - 51 Thì A = B + 52
B = 1 - 3 + 5 - 7 +...+ 49 - 51
Xét dãy số: 1; 3; 5; 7; ...; 49; 51
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Dãy số trên có số số hạng là:
(51 - 49): 2 + 1 = 26
26 : 2 = 13
Nhóm hai số hạng liên tiếp của B thành một nhóm khi đó
B = (1 - 3) + (5- 7) +...+ (49 - 51)
B = -2 + -2 + ... + -2
B = -2 x 13 = -26
A = B + 52 =
A = - 26 + 52
A = 26