Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)
Vậy..
a: \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+...+2^2-2\)
=>\(3A=2^{101}-2\)
=>\(A=\dfrac{2^{101}-2}{3}\)
b: Sửa đề: \(A=\dfrac{2\cdot8^4\cdot27^2+4\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)
\(A=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot2^9\cdot3^9}{2^7\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^3+3^3\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)
\(=\dfrac{2}{3}\cdot\dfrac{4+27}{16+15}=\dfrac{2}{3}\)
c: \(B=\dfrac{4^5\cdot9^4-2\cdot6^4}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^4\cdot3^4}{2^{10}\cdot3^8+2^8\cdot2^2\cdot5\cdot3^8}\)
\(=\dfrac{2^5\cdot3^4\left(2^5\cdot3^4-1\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{1}{2^5\cdot3^4}\cdot\dfrac{32\cdot81-1}{6}\)
\(=\dfrac{2591}{2^6\cdot3^5}\)
a) Ta có: \(M=\left(\dfrac{1}{2}x^2y\right)\cdot\left(\dfrac{2}{3}xy\right)^2\)
\(=\dfrac{1}{2}x^2y\cdot\dfrac{4}{9}x^2y^2\)
\(=\dfrac{2}{9}x^4y^3\)
b) Hệ số là \(\dfrac{2}{9}\)
Phần biến là \(x^4;y^3\)
c) Bậc là 7
d) Thay x=-1 và y=2 vào M, ta được:
\(M=\dfrac{2}{9}\cdot\left(-1\right)^4\cdot2^3=\dfrac{2}{9}\cdot8=\dfrac{16}{9}\)
297 . 299
= 297 . ( 298 + 1 )
= 297 . 298 + 297
2982 = 298 . 298
= ( 297 + 1 ) . 298
= 297 . 298 + 298
Mà 297 . 298 + 297 < 297 . 298 + 298 nên 297 . 299 < 2982 ( đpcm )
\(2^{100}=2^{4.25}=16^{25}\)
\(3^{75}=3^{3.25}=27^{25}\)
\(5^{50}=5^{2.25}=25^{25}\)
vì \(16^{25}< 25^{25}< 27^{25}\)
⇒ \(2^{100}< 5^{50}< 3^{75}\)
\(\frac{x-3}{5}+\frac{x-3}{6}+\frac{x-3}{7}=0\)
\(\left(x-3\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)=0\)
mà \(\frac{1}{5}>0;\frac{1}{6}>0;\frac{1}{7}>0\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\ne0\)
=> x - 3= 0
x = 3
Sửa đề: \(S=2^{100}-2^{99}+2^{98}-...+2^2-2\)
=>\(2\cdot S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
=>\(2S+S=2^{100}-2^{99}+2^{98}-...+2^2-2+2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
=>\(3S=2^{101}-2\)
=>\(S=\dfrac{2^{101}-2}{3}\)
Chịuuuuuuu