Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
Ta có
abcdeg = ab.10000+cd.100+eg
=9999.ab+ab+99.cd+cd+eg
=(9999.ab+99.cd)+(ab+cd+eg)
Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11
Ta có : abcdeg=10000.ab +100.cd+eg
=9999.ab+ab+99.cd+eg
=(9999.ab+99.cd)+(ab+cd+eg)
Vì 9999.ab chia hết cho 11 ; 99.cd chia hết cho 11 => 9999.ab+99.cd chia hết cho 11
Mà ab+cd+eg chia hết cho 11
=>(9999.ab+99.cd)+(ab+cd+eg) chia hết cho 11
hay abcdeg chia hết cho 11
Vậy abcdeg chia hết cho 11
Lời giải:
$\overline{abcdeg}=\overline{ab}\times 10000+\overline{cd}\times 100+\overline{eg}$
$=(\overline{ab}+\overline{cd}+\overline{eg})+9999\overline{ab}+99\overline{cd}$
$=(\overline{ab}+\overline{cd}+\overline{eg})+11(909\overline{ab}+9\overline{cd})\vdots 11$ do:
$(\overline{ab}+\overline{cd}+\overline{eg})\vdots 11$ và $11(909\overline{ab}+9\overline{cd})\vdots 11$
TK :
Theo tính chất chia hết của một tổng:
(ab + cd + eg) chia hết cho 11 (giả thiết),⇒ ab hoặc cd hoặc eg chia hết cho 11
⇒ abcdeg chia hết cho 11 (tính chất a ⋮ b, thì ac ⋮ b)
Theo tính chất chia hết cho 11:
abcdeg = ab.10000 + cd.100 + eg
abcdeg = 9999.ab + 99.cd + ab + cd + eg
abcdeg = 9999ab + 99cd + (ab + dc + eg)
Mà 9999ab ⋮ 11, 99cd ⋮ 11, (ab + cd + eg) ⋮ 11
⇒ abcdeg ⋮ 11
tham khảo ở đây nha: Câu hỏi của Tân Hoàn Châu - Toán lớp 6 - Học toán với OnlineMath
t i c k nhé!! 465675678897808909568483732574568568876863245345445657665
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
Ta có:
abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
ta có:abcdeg=abx10000+cdx100+eg
=abx9999xab+cdx99xcd+eg
=abx9999+cdx99+(ab+cd+eg)
vì 9999 chia hết cho 11=>ab:9999 chia hết cho 11
99 chia hết cho11=>cd:99 chia hết cho 11
mà ab+cd+eg chia hết cho 11=>abx9999xab+cdx99xcd+eg
=>abcdeg chia hết cho 11(đpcm)
\(\overline{abcdeg}=10000.\overline{ab}+100.\overline{cd}+\overline{eg}=9999.\overline{ab}+99.\overline{cd}+\overline{ab}+\overline{cd}+\overline{eg}\)
\(=11\left(909.\overline{ab}+9.\overline{cd}\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Ta có \(11\left(909.\overline{ab}+9.\overline{cd}\right)\) và \(\overline{ab}+\overline{cd}+\overline{eg}\) chia hết cho 11 => \(\overline{abcdeg}\) chia hết cho 11