Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}\sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{y}\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
=\(\frac{\sqrt{x}\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2\right)}{\sqrt{xy}}\)
=\(x-y\)
\(n=\left(1+\sqrt{3}+\sqrt{5}\right)\left(1+\sqrt{3}-\sqrt{5}\right)\)
\(n=\left(1+\sqrt{3}\right)^2-\sqrt{5}^2\)
\(n=1+2.\sqrt{3}.1+3-25\)
\(n=4-25+2\sqrt{3}\)
\(n=-21+2\sqrt{3}\)
Lời giải:
\(P=\sqrt{3+2x-x^2}=\sqrt{4-(x^2-2x+1)}=\sqrt{4-(x-1)^2}\)
Vì $(x-1)^2\geq 0$ với mọi $x$ nên $4-(x-1)^2\leq 4$
$\Rightarrow P\leq \sqrt{4}=2$
Vậy $P_{\max}=2$
Giá trị này đạt được tại $x-1=0\Leftrightarrow x=1$
Tham khao:cho đường tròn (O) và một dây cung BC của đường tròn sao cho góc BOC=120 độ. Các tiếp tuyến tại B và C của đường tròn cắt nhau ở A. Gọi M là điểm tùy ý trên cung nhỏ BC( trừ B và C. Tiếp tuyến tại M của đường tròn cắt AB tại E cắt AC tại F.
a) Tính góc EOF
b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R
c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm
d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI
a) Tính góc EOF:
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60*
b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R:
AB = AC (tính chất 2 tiếp tuyến) => ABC cân
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60*
=> ABC là tam giác đều.
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC
H là giao của OA và BC có BC = 2.CH
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4
=> CH = R√3/2
=> BC = R√3
=> CV(AEF) = 2BC = 2R√3.
c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE)
gt: OCF^ = 1v
=> OIFC nội tiếp đường tròn.
chứng ming tương tự có EK L OF
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF.
d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI:
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM)
MOK^ = COM^/2 ( tính chất tiếp tuyến)
=> CBM^ = KBM^ = MOK^
=> BOKM nội tiếp
=> BMO^ = BKO^ ( cùng chắn cung BO)
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc)
=> OEF^ = BKO^
=> ΔOEF ~ Δ OKI ( g.g.g)
ta có:
OEK^ = OFI^ ( có cạnh vuông góc)
OFI^ = OCI^ ( cùng chắn cung OI)
OCI^ = 30*
=> OEK^ = 30*
sin(OEK^) = OK/OE = 1/2 (1)
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2)
(1) và (2) => IK/EF = 1/2
a) Tính góc EOF:
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60*
b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R:
AB = AC (tính chất 2 tiếp tuyến) => ABC cân
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60*
=> ABC là tam giác đều.
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC
H là giao của OA và BC có BC = 2.CH
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4
=> CH = R√3/2
=> BC = R√3
=> CV(AEF) = 2BC = 2R√3.
c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE)
gt: OCF^ = 1v
=> OIFC nội tiếp đường tròn.
chứng ming tương tự có EK L OF
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF.
d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI:
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM)
MOK^ = COM^/2 ( tính chất tiếp tuyến)
=> CBM^ = KBM^ = MOK^
=> BOKM nội tiếp
=> BMO^ = BKO^ ( cùng chắn cung BO)
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc)
=> OEF^ = BKO^
=> ΔOEF ~ Δ OKI ( g.g.g)
ta có:
OEK^ = OFI^ ( có cạnh vuông góc)
OFI^ = OCI^ ( cùng chắn cung OI)
OCI^ = 30*
=> OEK^ = 30*
sin(OEK^) = OK/OE = 1/2 (1)
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2)
(1) và (2) => IK/EF = 1/2 a) Tính góc EOF:
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60*
b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R:
AB = AC (tính chất 2 tiếp tuyến) => ABC cân
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60*
=> ABC là tam giác đều.
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC
H là giao của OA và BC có BC = 2.CH
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4
=> CH = R√3/2
=> BC = R√3
=> CV(AEF) = 2BC = 2R√3.
c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE)
gt: OCF^ = 1v
=> OIFC nội tiếp đường tròn.
chứng ming tương tự có EK L OF
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF.
d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI:
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM)
MOK^ = COM^/2 ( tính chất tiếp tuyến)
=> CBM^ = KBM^ = MOK^
=> BOKM nội tiếp
=> BMO^ = BKO^ ( cùng chắn cung BO)
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc)
=> OEF^ = BKO^
=> ΔOEF ~ Δ OKI ( g.g.g)
ta có:
OEK^ = OFI^ ( có cạnh vuông góc)
OFI^ = OCI^ ( cùng chắn cung OI)
OCI^ = 30*
=> OEK^ = 30*
sin(OEK^) = OK/OE = 1/2 (1)
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2)
(1) và (2) => IK/EF = 1/2
=15√20 -3√45+2√5
=15\(\sqrt{4x5}\)-3\(\sqrt{9x5}\)+2√5
=30√5 -9√5+2√5
=23√5
\(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\) =\(\left(150\sqrt{2}-45\sqrt{2}+10\sqrt{2}\right):\sqrt{10}\)
=\(115\sqrt{2}:\sqrt{10}\)
chắc vậy
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
Có phải đề thế này không\(A=\frac{a^4-4a^3+a^2+6a+4}{a^2-2a+12}\)tại \(a=\sqrt{5}+1\)
đặt A=\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
=>\(\sqrt{2}A=\sqrt{2}\sqrt{2+\sqrt{3}}-\sqrt{2}\sqrt{2-\sqrt{3}}\)
=\(\sqrt{2\left(2+\sqrt{3}\right)}-\sqrt{2\left(2-\sqrt{3}\right)}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
=\(\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)
=\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
=\(\sqrt{3}+1-\sqrt{3}+1=2\)
=>A=\(\frac{2}{\sqrt{2}}=\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}=\sqrt{2}\)
vậy \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}=\sqrt{2}\)
Viết đề rõ hơn một chút