K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

đặt A=\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

=>\(\sqrt{2}A=\sqrt{2}\sqrt{2+\sqrt{3}}-\sqrt{2}\sqrt{2-\sqrt{3}}\)

=\(\sqrt{2\left(2+\sqrt{3}\right)}-\sqrt{2\left(2-\sqrt{3}\right)}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

=\(\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)

=\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)

=\(\sqrt{3}+1-\sqrt{3}+1=2\)

=>A=\(\frac{2}{\sqrt{2}}=\frac{\sqrt{2}\sqrt{2}}{\sqrt{2}}=\sqrt{2}\)

vậy \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}=\sqrt{2}\)

8 tháng 7 2015

Viết đề rõ hơn một chút

8 tháng 7 2015

\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}\sqrt{x}\sqrt{y}+\sqrt{y}\sqrt{y}\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

=\(\frac{\sqrt{x}\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2\right)}{\sqrt{xy}}\)

=\(x-y\)

24 tháng 9 2017

can là gì vậy bạn?

24 tháng 9 2017

\(n=\left(1+\sqrt{3}+\sqrt{5}\right)\left(1+\sqrt{3}-\sqrt{5}\right)\)

\(n=\left(1+\sqrt{3}\right)^2-\sqrt{5}^2\)

\(n=1+2.\sqrt{3}.1+3-25\)

\(n=4-25+2\sqrt{3}\)

\(n=-21+2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
20 tháng 7

Lời giải:

\(P=\sqrt{3+2x-x^2}=\sqrt{4-(x^2-2x+1)}=\sqrt{4-(x-1)^2}\)

Vì $(x-1)^2\geq 0$ với mọi $x$ nên $4-(x-1)^2\leq 4$

$\Rightarrow P\leq \sqrt{4}=2$
Vậy $P_{\max}=2$

Giá trị này đạt được tại $x-1=0\Leftrightarrow x=1$

30 tháng 1 2018

Tham khao:cho đường tròn (O) và một dây cung BC của đường tròn sao cho góc BOC=120 độ. Các tiếp tuyến tại B và C của đường tròn cắt nhau ở A. Gọi M là điểm tùy ý trên cung nhỏ BC( trừ B và C. Tiếp tuyến tại M của đường tròn cắt AB tại E cắt AC tại F. 
a) Tính góc EOF 
b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R 
c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI

 a) Tính góc EOF: 
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60* 

b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R: 
AB = AC (tính chất 2 tiếp tuyến) => ABC cân 
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60* 
=> ABC là tam giác đều. 
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC 
H là giao của OA và BC có BC = 2.CH 
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2 
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4 
=> CH = R√3/2 
=> BC = R√3 
=> CV(AEF) = 2BC = 2R√3. 

c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM 
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^ 
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF 
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE) 
gt: OCF^ = 1v 
=> OIFC nội tiếp đường tròn. 
chứng ming tương tự có EK L OF 
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF 
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF. 

d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI: 
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM) 
MOK^ = COM^/2 ( tính chất tiếp tuyến) 
=> CBM^ = KBM^ = MOK^ 
=> BOKM nội tiếp 
=> BMO^ = BKO^ ( cùng chắn cung BO) 
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc) 
=> OEF^ = BKO^ 
=> ΔOEF ~ Δ OKI ( g.g.g) 
ta có: 
OEK^ = OFI^ ( có cạnh vuông góc) 
OFI^ = OCI^ ( cùng chắn cung OI) 
OCI^ = 30* 
=> OEK^ = 30* 
sin(OEK^) = OK/OE = 1/2 (1) 
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2) 
(1) và (2) => IK/EF = 1/2

30 tháng 1 2018

 a) Tính góc EOF: 
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60* 

b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R: 
AB = AC (tính chất 2 tiếp tuyến) => ABC cân 
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60* 
=> ABC là tam giác đều. 
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC 
H là giao của OA và BC có BC = 2.CH 
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2 
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4 
=> CH = R√3/2 
=> BC = R√3 
=> CV(AEF) = 2BC = 2R√3. 

c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM 
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^ 
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF 
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE) 
gt: OCF^ = 1v 
=> OIFC nội tiếp đường tròn. 
chứng ming tương tự có EK L OF 
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF 
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF. 

d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI: 
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM) 
MOK^ = COM^/2 ( tính chất tiếp tuyến) 
=> CBM^ = KBM^ = MOK^ 
=> BOKM nội tiếp 
=> BMO^ = BKO^ ( cùng chắn cung BO) 
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc) 
=> OEF^ = BKO^ 
=> ΔOEF ~ Δ OKI ( g.g.g) 
ta có: 
OEK^ = OFI^ ( có cạnh vuông góc) 
OFI^ = OCI^ ( cùng chắn cung OI) 
OCI^ = 30* 
=> OEK^ = 30* 
sin(OEK^) = OK/OE = 1/2 (1) 
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2) 
(1) và (2) => IK/EF = 1/2 a) Tính góc EOF: 
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60* 

b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R: 
AB = AC (tính chất 2 tiếp tuyến) => ABC cân 
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60* 
=> ABC là tam giác đều. 
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC 
H là giao của OA và BC có BC = 2.CH 
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2 
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4 
=> CH = R√3/2 
=> BC = R√3 
=> CV(AEF) = 2BC = 2R√3. 

c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM 
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^ 
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF 
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE) 
gt: OCF^ = 1v 
=> OIFC nội tiếp đường tròn. 
chứng ming tương tự có EK L OF 
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF 
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF. 

d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI: 
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM) 
MOK^ = COM^/2 ( tính chất tiếp tuyến) 
=> CBM^ = KBM^ = MOK^ 
=> BOKM nội tiếp 
=> BMO^ = BKO^ ( cùng chắn cung BO) 
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc) 
=> OEF^ = BKO^ 
=> ΔOEF ~ Δ OKI ( g.g.g) 
ta có: 
OEK^ = OFI^ ( có cạnh vuông góc) 
OFI^ = OCI^ ( cùng chắn cung OI) 
OCI^ = 30* 
=> OEK^ = 30* 
sin(OEK^) = OK/OE = 1/2 (1) 
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2) 
(1) và (2) => IK/EF = 1/2

23 tháng 7 2018

=15√20 -3√45+2√5

=15\(\sqrt{4x5}\)-3\(\sqrt{9x5}\)+2√5

=30√5 -9√5+2√5

=23√5

23 tháng 7 2018

\(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\) =\(\left(150\sqrt{2}-45\sqrt{2}+10\sqrt{2}\right):\sqrt{10}\)

                                                                                                =\(115\sqrt{2}:\sqrt{10}\)

 chắc vậy

Ta có: \(\Delta'=32>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)

Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\) 

 

22 tháng 10 2017

Có phải đề thế này không\(A=\frac{a^4-4a^3+a^2+6a+4}{a^2-2a+12}\)tại \(a=\sqrt{5}+1\)

22 tháng 10 2017

tinh Gia tri cua bieu thuc A=a^4-4a^3+a^2+6a+4/(a^2-2a+12) tai a= can cua 5 +1

 

 Câu hỏi tương tự Đọc thêm Báo cáo