K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

Tham khao:cho đường tròn (O) và một dây cung BC của đường tròn sao cho góc BOC=120 độ. Các tiếp tuyến tại B và C của đường tròn cắt nhau ở A. Gọi M là điểm tùy ý trên cung nhỏ BC( trừ B và C. Tiếp tuyến tại M của đường tròn cắt AB tại E cắt AC tại F. 
a) Tính góc EOF 
b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R 
c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI

 a) Tính góc EOF: 
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60* 

b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R: 
AB = AC (tính chất 2 tiếp tuyến) => ABC cân 
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60* 
=> ABC là tam giác đều. 
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC 
H là giao của OA và BC có BC = 2.CH 
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2 
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4 
=> CH = R√3/2 
=> BC = R√3 
=> CV(AEF) = 2BC = 2R√3. 

c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM 
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^ 
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF 
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE) 
gt: OCF^ = 1v 
=> OIFC nội tiếp đường tròn. 
chứng ming tương tự có EK L OF 
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF 
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF. 

d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI: 
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM) 
MOK^ = COM^/2 ( tính chất tiếp tuyến) 
=> CBM^ = KBM^ = MOK^ 
=> BOKM nội tiếp 
=> BMO^ = BKO^ ( cùng chắn cung BO) 
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc) 
=> OEF^ = BKO^ 
=> ΔOEF ~ Δ OKI ( g.g.g) 
ta có: 
OEK^ = OFI^ ( có cạnh vuông góc) 
OFI^ = OCI^ ( cùng chắn cung OI) 
OCI^ = 30* 
=> OEK^ = 30* 
sin(OEK^) = OK/OE = 1/2 (1) 
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2) 
(1) và (2) => IK/EF = 1/2

30 tháng 1 2018

 a) Tính góc EOF: 
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60* 

b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R: 
AB = AC (tính chất 2 tiếp tuyến) => ABC cân 
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60* 
=> ABC là tam giác đều. 
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC 
H là giao của OA và BC có BC = 2.CH 
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2 
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4 
=> CH = R√3/2 
=> BC = R√3 
=> CV(AEF) = 2BC = 2R√3. 

c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM 
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^ 
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF 
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE) 
gt: OCF^ = 1v 
=> OIFC nội tiếp đường tròn. 
chứng ming tương tự có EK L OF 
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF 
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF. 

d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI: 
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM) 
MOK^ = COM^/2 ( tính chất tiếp tuyến) 
=> CBM^ = KBM^ = MOK^ 
=> BOKM nội tiếp 
=> BMO^ = BKO^ ( cùng chắn cung BO) 
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc) 
=> OEF^ = BKO^ 
=> ΔOEF ~ Δ OKI ( g.g.g) 
ta có: 
OEK^ = OFI^ ( có cạnh vuông góc) 
OFI^ = OCI^ ( cùng chắn cung OI) 
OCI^ = 30* 
=> OEK^ = 30* 
sin(OEK^) = OK/OE = 1/2 (1) 
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2) 
(1) và (2) => IK/EF = 1/2 a) Tính góc EOF: 
EOF^ = FOM^ +EOM^ = BOM^/2 + COM^/2 = BOC^/2 = 120*/2 = 60* 

b)Chứng minh tam giác ABC là tam giác đều .Tính chu vi của tam giác AEF biết bán kính =R: 
AB = AC (tính chất 2 tiếp tuyến) => ABC cân 
sđACB^ = sđ(BC/2) = sđ(BOC^)/2 = 120*/2 = 60* 
=> ABC là tam giác đều. 
CV(AEF) = AF + AE + EM + MF = AE + BE + AF + CF = AB + AC = 2BC 
H là giao của OA và BC có BC = 2.CH 
OCH là tam giác vuông có OCH^ = 30* => OH = OC/2 = R/2 
CH^2 = OC^2 - OH^2 = R^2 - R^2/4 = 3R^2/4 
=> CH = R√3/2 
=> BC = R√3 
=> CV(AEF) = 2BC = 2R√3. 

c)Gọi I và K lần lượt là giao điểm của BC với OE và OF. Chứng minh tứ giác OIFC nội tiếp và các đường thẳng OM, EK,FI cùng đi qua 1 điểm 
OE là trung tực của BM (tính chất tiếp tuyến), I thuộc OE => IB = IM 
=> ΔOBI = Δ OMI (c.c.c) => OMI^ = OBI^ = 30* = OCI^ 
=> OCMI nội tiếp đường tròn, mà O,C,M thuộc đường tròn đường kính OF 
=> I thuộc đường tròn đường kính OF => OIF^ = 1v (FI L OE) 
gt: OCF^ = 1v 
=> OIFC nội tiếp đường tròn. 
chứng ming tương tự có EK L OF 
vậy FI và EK là 2 đường cao của Δ OEF và OM L EF là đường cao thứ 3 của Δ OEF 
=> OM, EK,FI cùng đi qua 1 điểm là trực tâm của Δ OEF. 

d) Chứng minh tam giác OIK đồng dạng với tam giác OFE và EF=2KI: 
CBM^ = COM^/2 ( góc nội tiếp = 1/2 góc ở tâm cùng chắn cung CM) 
MOK^ = COM^/2 ( tính chất tiếp tuyến) 
=> CBM^ = KBM^ = MOK^ 
=> BOKM nội tiếp 
=> BMO^ = BKO^ ( cùng chắn cung BO) 
mà BMO^ = OEF^ ( có cạnh tương ứng vuông góc) 
=> OEF^ = BKO^ 
=> ΔOEF ~ Δ OKI ( g.g.g) 
ta có: 
OEK^ = OFI^ ( có cạnh vuông góc) 
OFI^ = OCI^ ( cùng chắn cung OI) 
OCI^ = 30* 
=> OEK^ = 30* 
sin(OEK^) = OK/OE = 1/2 (1) 
do ΔOEF ~ Δ OKI => OK/OE = IK/EF (2) 
(1) và (2) => IK/EF = 1/2

5 tháng 12 2019

Băng Băng 2k6Vũ Minh TuấnNguyễn Việt LâmHISINOMA KINIMADONguyễn Lê Phước ThịnhNguyễn Thị Ngọc ThơNguyễn Thanh HiềnQuân Tạ Minhtth

Em lớp 8 anh gì ơithanghoa

30 tháng 12 2018

Uyen Vuuyen, Trần Trung Nguyên, Nguyễn Việt Lâm, Akai Haruma, JakiNatsumi, bullet sivel, Vương Đại Nguyên, Đời về cơ bản là buồn... cười!!!, Tạ Thị Diễm Quỳnh, @Nk>↑@, DƯƠNG PHAN KHÁNH DƯƠNG, Bonking, Thiên Hàn, Ribi Nkok Ngok, TRẦN MINH HOÀNG, Mysterious Person, Aki Tsuki, Khánh Như Trương Ngọc, Phùng Khánh Linh, ...

30 tháng 12 2018

Mk hem bt làm :(