Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)
Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)
b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.
c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)
Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp
Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)
câu c nè: mik ns ý chính nhé
h bạn kẻ tiếp tuyến tại A
chứng minh đc AO vuông góc vs MN
=> OA vuông góc vs EF
do OA cố định
=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định
do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha
a, Ta co 2 bo de quen thuoc sau : FC la phan giac ^EFD, FB la phan giac PFD
ma QR//EP nen
\(\widehat{PFB}=\widehat{FQD}=\widehat{QFD}\Rightarrow\Delta DFQ\) can tai D => DF=DQ (1)
mat khac theo tinh chat tia phan giac ngoai ^PFD co \(\frac{FD}{FP}=\frac{CD}{CP}\)
ma \(\frac{CD}{CP}=\frac{DT}{PF}\) (DT//PF)
suy ra \(\frac{DF}{PF}=\frac{DT}{PF}\Rightarrow DT=DF\) (2)
Tu(1)va (2) suy ra DT=DQ hay D la trung diem QT
b, Goi S la trung diem BC ta chung minh PQSR noi tiep
Co \(\Delta PSE~\Delta ESD\left(G-G\right)\Rightarrow\frac{PS}{ES}=\frac{ES}{SD}\Leftrightarrow ES^2=PS.DS\)
lai co ES=SB=SC do S la trung diem canh huyen BC cua tam giac vuong BEC
suy ra \(BS^2=PS.SD=DS\left(PD+DS\right)=SD^2+PD.DS\)
=> \(PD.DS=BS^2-SD^2=\left(BS-DS\right)\left(BS+DS\right)=BD.DC\) (3)
Mat khac ^DQB=^PFB(cmt)
^PFB=^RCD( BFEC nt)
suy ra ^DQB=^RCD=> BQCR noi tiep
=> \(BD.DC=DQ.DR\) (4)
Tu (3),(4) suy ra DP.DS=DQ.DR => PQDR noi tiep
=> (PQR) di qua S la trung diem BC co dinh
c,lay H' doi xung voi H qua BC, ta co H' thuoc (O) .
ta lai co bo de sau : \(BD.DC=DH.DA\) (quen thuoc)
suy ra \(DP.DS=DH.DA\left(=DB.DC\right)\)
<=> \(\frac{DH}{DP}=\frac{DS}{DA}\)
ma ^HDP=^SDA=90
suy ra \(\Delta DHP~\Delta DSA\left(c-g-c\right)\Rightarrow\widehat{DHP}=\widehat{DSA}\)
va \(\widehat{DSA}=\widehat{AHK}\left(phu\widehat{DAS}\right)\)
=>\(\widehat{DHP}=\widehat{AHK}\) => P,H,K thang hang
lai co \(\widehat{AFH}=\widehat{AKH}=\widehat{AEH}=90\)
=> A,F,H,K,E cung thuoc 1 duong tron =. FHKE noi tiep
=>\(PF.PE=PH.PK\) (5)
ma BFEC noi tiep => \(PF.PE=PB.PC\) (6)
(5)+(6)Suy ra \(PH.PK=PB.PC\) => BHKC noi tiep
Vi H' ,I doi xung voi H,K qua BC ma BHKC noi tiep => BH'IC noi tiep
do vay \(I\in\left(BH'C\right)=\left(ABH'C\right)=\left(O\right)\)
e,Goi tam (CJL) la U, (U) cat (O) tai V, BC giao OG tai X
=> \(\widehat{VBG}=\widehat{VJG}\left(=\widehat{VCB}\right)\) =>BJVG noi tiep
=> B,J,X,V,G cung thuoc 1 duong tron => ^BVG=^BXG=90
lai co ^XVG +^XBG=180 hay ^XVG+^BAC=180
va ^BVC+^BAC=180
suy ra ^XVG=^BVC
hay 90 +^XVB=^XVB+^XVC
=> ^XVC=90
=> V thuoc duong tron dk XC
mat khac V cung thuoc (O)
suy ra V co dinh ,C co dinh
suy ra tam U di chuyen tren trung truc VC co dinh (dpcm)
a) Theo đề bài, dễ thấy \(\widehat{FBH}=90^o\). Do FA tiếp xúc (O) tại A nên \(\widehat{FAH}=90^o\). Từ đó suy ra \(\widehat{FBH}=\widehat{FAH}=90^o\), suy ra tứ giác FAHB nội tiếp.
b) Nhận thấy \(\widehat{FAD}=\widehat{FBA}\) vì chúng lần lượt là góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp chắn cung AD. Suy ra \(\Delta FAD~\Delta FBA\left(g.g\right)\) \(\Rightarrow\dfrac{FA}{FB}=\dfrac{FD}{FA}\) \(\Rightarrow FA^2=FB.FD\). Tương tự, ta có \(GA^2=GE.GC\). Cộng theo vế 2 hệ thức vừa tìm được, suy ra đpcm.
c) Ta có \(\widehat{ADI}=\widehat{AEG}=\widehat{ABC}=\widehat{AFH}=\widehat{AFI}\) nên tứ giác AFDI nội tiếp, suy ra \(\widehat{FAD}=\widehat{FID}\). Mà \(\widehat{FID}=\widehat{OIH}\) còn \(\widehat{FAD}=\widehat{FBA}=\widehat{FHA}=\widehat{OHI}\) nên từ đó suy ra \(\widehat{OIH}=\widehat{OHI}\) hay tam giác OHI cân tại O hay \(OI=OH\). Hoàn toàn tương tự, ta có \(OJ=OH\), suy ra đpcm.
d) Ta có \(\widehat{HIC}=\widehat{AHF}=90^o-\widehat{AFH}=90^o-\widehat{ABC}=90^o-\widehat{GAC}\) \(=90^o-\widehat{GHC}=\widehat{HGC}\) nên tứ giác HIGC nội tiếp. Do đó \(\widehat{GIH}=180^o-\widehat{HCG}=90^o\) hay \(GI\perp HF\) tại I. Tương tự, ta có \(FJ\perp HG\) tại J. Mặt khác, \(HA\perp FG\) tại A nên HA, FJ, GI sẽ đồng quy tại trực tâm M của tam giác FGH.
Ta sẽ chứng minh M di chuyển trên DE (dễ dàng kiểm tra DE cố định). Thật vậy, dễ thấy 5 điểm A, M, I, D, F cùng nằm trên 1 đường tròn, do đó \(\widehat{DMI}=\widehat{DFI}=90^o-\widehat{BHF}\). Tương tự, ta có \(\widehat{JME}=90^o-\widehat{GHC}\). Lại có tứ giác IMJH nội tiếp nên \(\widehat{IMJ}=180^o-\widehat{IHJ}=180^o-\widehat{FHG}\). Từ đây suy ra \(\widehat{DMI}+\widehat{IMJ}+\widehat{JME}=360^o-\left(\widehat{BHF}+\widehat{FHG}+\widehat{GHC}\right)=180^o\), hay D, M, E thẳng hàng, tức là M thuộc DE. Ta có đpcm.