K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2023

Đặt A= 2x+2x+1+......+2x+2018

⇒ 2A=2x+1+......+2x+2018+2x+2019

⇒   A= 2A-A = 2x+2019- 2x*Em trừ mấy cái giống nhau đi á

Theo bài ra:

⇒ 2x+2019- 2x=22023-16=22023-24

⇒x=4

*like hộ phát

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2019}=2^{x+2023}-8$

$2^x(1+2+2^2+...+2^{2019})=2^{x+2023}-8$

Xét:

$A=1+2+2^2+...+2^{2019}$

$2A=2+2^2+2^3+...+2^{2020}$

$\Rightarrow A=2A-A=2^{2020}-1$

Khi đó:

$2^x.A=2^{x+2023}-8$

$2^x(2^{2020}-1)=2^{x+2023}-2^3$

$2^x(2^{2023}-2^{2020}+1)-2^3=0$

$2^x(2^{2020}.7+1)=2^3$

$x$ ra số sẽ khá xấu. Bạn coi lại.

23 tháng 9 2023

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh

23 tháng 9 2023

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)

\(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)

\(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)

\(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)

⇒ \(x+1=2023\)

\(x=2023-1=2022\)

9 tháng 2 2023

\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)

\(\Rightarrow2023x+4090506=2024-2024-20232023\)

\(\Rightarrow x+4090506=-2023\)

\(\Rightarrow2023x=-2023-4090506\)

\(\Rightarrow2023x=-4092529\)

\(\Rightarrow x=-2023\).

 

24 tháng 11

1011

 

5 tháng 4 2023

x=7 nha

11 tháng 5 2023

1)\(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{11}{70}\)

\(\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{x\left(x+3\right)}\right):3=\dfrac{11}{70}\)

\(\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{11}{70}\cdot3\)

\(\dfrac{1}{2}-\dfrac{1}{x+3}=\dfrac{33}{70}\)

\(\dfrac{1}{x+3}=\dfrac{1}{2}-\dfrac{33}{70}\)

\(\dfrac{1}{x+3}=\dfrac{2}{70}\)

\(\dfrac{1}{x+3}=\dfrac{1}{35}\)

\(x+3=35\\ x=35-3\\ x=32\)

2) Số góc đc tạo thành từ 2023 tia chung gốc là:\(\dfrac{2023\cdot2022}{2}=2045253\) (góc)

11 tháng 5 2023

Bài 1 thì bạn Ánh làm đúng rồi

Bài 2 thì giải chi tiết như này em nhé:

Cứ 1 tia tạo với 2023 - 1 tia còn lại là 2023 - 1 góc

Với 2023 tia thì tạo được số góc là:  (2023 - 1)\(\times\) 2023 góc

Theo cách tính trên thì mỗi góc đã được tính hai lần

Vậy số góc tạo được là: (2023-1)\(\times\) 2023: 2 = 2045253 (góc)

Kết luận: ...

28 tháng 3 2018

a) x = 190            

b) x = 344           

c) x = 4                

d) x = 20