Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. So sánh diện tích các cặp tam giác ABC và ADC; ABM và CAM.
S_ABC = 1/3 S_ADC (Đáy AB = 1/3 đáy CD; Chiều cao hạ xuống đáy từ C bằng chiều cao hạ từ A)
S_ABM = 1/3 S_CAM (Đáy AM chung; chiều cao hạ từ B bằng 1/3 chiều cao hạ từ B xuống đáy AM)
b. Tính diện tích tam giác ABM biết diện tích hình thang ABCD = 64 cm2.
S_ABC = 1/3 S_ACD (câu trên) => S_ABC = 1/4 S_ABCD = 64 : 4 = 16 cm2
Mà: S_ABM = 1/3 S_ACM (câu trên) => S_ABM = 1/2 S_ABC = 16 : 2 = 8 cm2
Đáp án : 8cm2
a) Ta thấy ngay tam giác MAE và tam giác MEC có chung chiều cao hạ từ M xuống AC, EC = 4AE nên \(S_{MEC}=4S_{MAE}=4\times20=80\left(cm^2\right)\)
b) Ta thấy tam giác MBD và tam giác MCD có chung chiều cao và đáy BD = DC nên \(S_{MBD}=S_{MCD}\)
Ta thấy tam giác EBD và tam giác ECD có chung chiều cao và đáy BD = DC nên \(S_{EBD}=S_{ECD}\)
Vậy nên \(S_{MBE}=S_{MEC}=80\left(cm^2\right)\)
Ta có \(\frac{S_{AME}}{S_{MEC}}=\frac{1}{4};\frac{S_{ABE}}{S_{EBC}}=\frac{1}{4}\Rightarrow\frac{S_{AME}+S_{ABE}}{S_{MEC}+S_{EBC}}=\frac{1}{4}\Rightarrow\frac{S_{MBE}}{S_{MEBC}}=\frac{1}{4}\)
\(\Rightarrow S_{MEBC}=4.80=320\left(cm^2\right)\)
\(\Rightarrow S_{MBC}=320+80=400\left(cm^2\right)\)
\(\Rightarrow S_{ABC}=400-20-80=300\left(cm^2\right)\)