Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 + 2 m x + 7
Bấm máy tính
Đường thẳng đi qua 2 điểm cực trị là
Ta có: y ' = - 3 x 2 + 2 ( 2 m - 1 ) x + m - 2 ( * )
Để hàm số đã cho có cực đại và cực tiểu khi và chỉ khi: phương trình có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.
Chọn C.
Chọn A
[Phương pháp trắc nghiệm]
y ' = 3 x 2 - 6 x - m
Hàm số có 2 cực trị m > -3 , gọi x 1 , x 2 là hai nghiệm của phương trình y ' = 0 ,
ta có: x 1 + x 2 = 2
Bấm máy tính
Hai điểm cực trị của đồ thị hàm số là
Gọi I là trung điểm của AB
⇒ I ( 1 ; - m )
Đường thẳng đi qua hai điểm cực trị là
Yêu cầu bài toán
Kết hợp với điều kiện thì m = 0
a) y′ = 3 x 2 + 2(m + 3)x + m
y′ = 0 ⇔ 3 x 2 + 2(m + 3)x + m = 0
Hàm số đạt cực trị tại x = 1 thì:
y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3
Khi đó,
y′ = 3 x 2 – 3;
y′′ = 6x;
y′′(1) = 6 > 0;
Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.
b) y′ = −( m 2 + 6m) x 2 − 4mx + 3
y′(−1) = − m 2 − 6m + 4m + 3 = (− m 2 − 2m – 1) + 4 = −(m + 1)2 + 4
Hàm số đạt cực trị tại x = -1 thì :
y′(−1) = − ( m + 1 ) 2 + 4 = 0 ⇔ ( m + 1 ) 2 = 4
⇔
Với m = -3 ta có y’ = 9 x 2 + 12x + 3
⇒ y′′ = 18x + 12
⇒ y′′(−1) = −18 + 12 = −6 < 0
Suy ra hàm số đạt cực đại tại x = -1.
Với m = 1 ta có:
y′ = −7 x 2 − 4x + 3
⇒ y′′ = −14x − 4
⇒ y′′(−1) = 10 > 0
Suy ra hàm số đạt cực tiểu tại x = -1
Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.
Đáp án D.
y = -x3 + (2m – 1)x2 – (2 – m)x – 2
TXĐ: D = R
y' = -3x2 + 2(2m – 1) – 2 + m
Đồ thị hàm số có cực đại và cực tiểu <=> Pt y’ = 0 có hai nghiệm phân biệt
<=> Δ’ = (2m – 1)2 + 3(-2 + m) > 0 <=> 4m2 – m – 5 > 0 <=> m ∈ (-∞; -1) ∪ (5/4; +∞)
+ Ta có: y’ = 6x2-6( 2m+1) x+ 6m(m+1)
do đó hàm số luôn có cực đại cực tiểu với mọi m.
+ Tọa độ các điểm CĐ, CT của đồ thị là A( m; 2m3+3m2+1 ) và B( m+1; 2m3+3m2)
Suy ra AB = √2 và phương trình đường thẳng AB: x+ y-2m3-3m2-m-1=0.
+ Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.
d ( M , A B ) = 3 m 2 + 1 2 ⇒ d ( M , A B ) ≥ 1 2 ⇒ m i n d ( M , A B ) = 1 2
đạt được khi m=0
Chọn B
\(y'=3x^2-2\left(m+2\right)x+m-1\)
\(\Delta'=\left(m+2\right)^2-3\left(m-1\right)=m^2+m+7>0;\forall m\)
Hàm luôn có CĐ-CT
Tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt đường thẳng d' đi qua CĐ-CT có dạng:
\(y=-\frac{2m^2+2m+14}{9}x+\frac{m^2+19m-11}{9}\)
\(\Leftrightarrow\left(2m^2+2m+14\right)x+9y-\left(m^2+19m-11\right)=0\)
\(\Rightarrow\) d' nhận \(\left(2m^2+2m+14;9\right)\) là 1 vtpt
Do d có 1 vtpt là \(\left(2;1\right)\) nên:
\(cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|2\left(2m^2+2m+14\right)+9\right|}{\sqrt{\left(2m^2+2m+14\right)^2+81}.\sqrt{5}}\)
Đặt \(2m^2+2m+14=t>0\)
\(\Rightarrow\frac{\left|2t+9\right|}{\sqrt{5t^2+405}}=\frac{\sqrt{3}}{2}\Leftrightarrow4\left(2t+9\right)^2=3\left(5t^2+405\right)\)
\(\Leftrightarrow t^2+144t-891=0\)
Nghiệm xấu quá, bạn tự hoàn thành :D