K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 8 2017

Lời giải:

Ta có :

\(y=-x^3+3mx^2-3m-1\)

\(\Rightarrow y'=-3x^2+6mx=0\Leftrightarrow 2mx-x^2=0\)

\(\Leftrightarrow \) \(\left[{}\begin{matrix}x=0\\x=2m\end{matrix}\right.\)

Để ĐTHS có 2 cực trị thì trước tiên \(m\neq 0\)

Khi đó, hai điểm cực trị của ĐTHS là: \(A(0,-3m-1)\)\(B(2m,4m^3-3m-1)\)

Hai điểm cực trị đối xứng nhau qua \(d: x+8y-74=0\)

\(\Leftrightarrow d(A,d)=d(B,d)\)

\(\Leftrightarrow |0+8(-3m-1)-74|=|2m+8(4m^3-3m-1)-74|\)

\(\Leftrightarrow |-24m-82|=|32m^3-22m-82|\)

Từ đây ta chia ra 2TH:

TH1: \(-24m-82=32m^3-22m-82\)

TH2: \(24m+82=32m^3-22m-82\)

Từ 2 TH ta thu được \(m=2\) thỏa mãn