K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

x:y:z=4:3:9↔x4=y3=z9↔x4=3y9=4z36x:y:z=4:3:9↔x4=y3=z9↔x4=3y9=4z36

Áp dụng tính chất dãy tỉ số bằng nhau:

x4=3y9=4z36=x−3y+4z4−9+36=6231=2→⎧⎨⎩x=8y=6z=18

14 tháng 10 2016

Vì x:y:z=2:3:4

=>x/2=y/3=z/4=2z/8

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x/2=y/3=z/4=x+y-2z/2+3-8=3/-3=-1

Do đó: x/2=-1=>x=-2

            y/3=-1=>y=-3

            z/4=-1=>z=-4

30 tháng 11 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2z}{8}\)

x+y-2z=3

áp dụng ta có: 

\(\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1\)

suy ra: 

\(\frac{x}{2}=-1...x=-2\) tương tự với y và z.

30 tháng 7 2016

Có \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\) 

=> \(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\) 

Áp dụng tính chất dãy tỉ số bằng nhau có : 

    \(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)\(\frac{x-3y+4z}{4-9+36}\) =  \(\frac{62}{31}\)= 2  

=>     x = 8    ,  y = 6   ,     z = 18

30 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-3.3+4.9}=\frac{62}{31}=2\)

  • \(\frac{x}{4}=2.4=8\)
  • \(\frac{y}{3}=2.3=6\)
  • \(\frac{z}{9}=2.9=18\)

Vậy x=8,y=6,z=18

mk nhé bạn ^...^ ^_^

16 tháng 10 2020

Mk cần gấp để nộp ạ

24 tháng 10 2015

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và \(x-3y+4\text{z}=62\)

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4\text{z}}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow\frac{x}{4}=2\Rightarrow x=4.2=8\)

\(\Rightarrow\frac{y}{3}=2\Rightarrow y=3.2=6\)

\(\Rightarrow\frac{z}{9}=2\Rightarrow z=2.9=18\)

20 tháng 11 2021

Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!

Answer:

a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Ta có: \(5z^2-3x^2-2y^2=594\)

\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)

\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)

\(\Rightarrow125k^2-27k^2-32k^2=594\)

\(\Rightarrow k^2.\left(125-27-32\right)=594\)

\(\Rightarrow k^2.66=594\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)

Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)

20 tháng 11 2021

Answer:

b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)

Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)

\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)

c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)

\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)

\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)

\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)

26 tháng 10 2021

???

???
???
???