Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) \(\frac{9x+9y}{10a-10b}=\frac{9\left(x+y\right)}{10\left(a-b\right)}=\frac{9}{10}.\frac{x+y}{a-b}=\frac{9}{10}.\frac{2}{3}=\frac{3}{5}\)
2 ) \(\left(-3x-y\right)=10\Rightarrow3x+y=-10\)
\(\Rightarrow2\left(3x+y\right)=2.\left(-10\right)\)
\(\Rightarrow6x+2y=-20\)
\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)
\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)
\(=2k^2-k^2=k^2\)(1)
và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)
Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)