Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3. Giải
(x+y)^2=x^2+y^2+2xy => xy= -3
x^3+y^3=(x+y)^3-3xy(x+y) = 26
2) Ta có: x^3+y^3 = (x+y)(x^2-xy+y^2) (1)
(x+y)^2=a^2
=> x^2 +2xy +y^2=a^2
=> b+2xy=a^2
=> xy=\(\frac{a^2-b}{2}\)
Thay (1) vào đó ta có:
x^3+y^3= (x+y)(x^2-xy+y^2) = a(b-\(\frac{a^2-b}{2}\)) = \(a\left(\frac{2b-a^2+b}{2}\right)=a.\frac{3b-a^2}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10-xy\right)\)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2xy=4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)
Vậy: \(x^3+y^3=2\left(10+3\right)=2.13=26\)
\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(A=b\left(x^2+xy+y^2\right)\)
Mặt khác : \(x+y=a\)
\(\Leftrightarrow a^2=\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+xy+y^2=a^2-xy\)
\(A=b\left(a^2-xy\right)\)
\(A=a^2b-bxy\)
ta có: \(x+y=a;x-y=b\Rightarrow y=\frac{a-b}{2};x=\frac{a+b}{2}.\)
=> \(y.x=\frac{a-b}{2}\cdot\frac{a+b}{2}=\frac{a^2-b^2}{4}\)
\(\Rightarrow x^3-y^3=\left(\frac{a+b}{2}\right)^3-\left(\frac{a-b}{2}\right)^3\)
\(=\frac{\left(a+b\right)^3-\left(a-b\right)^3}{8}=...\)
a) Ta có:
x + y = 2
=> ( x + y)2 = 4
=> x2 + 2xy + y2 = 4
=> 10 + 2xy = 4
=> 2xy = 4 - 10 = -6
=> xy = -6/2 = -3
Ta có:
A = x3 + y3
A = (x + y)(x2 - xy + y2)
A = 2(10 + 3)
A = 26
b) Ta có:
x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có:
B = x3 + y3
B = (x + y)(x2 + xy + y2)
B = a[b + (a2 - b )/2]
B = ab + (a3 - b)/2
cho x+y=2(=)(x+y)^2=4(=)x^2+y^2+2xy=4
(=)10+2xy=4(=)2xy=-6(=)xy=-3
mà x^3+y^3=(x+y)(x^2+y^2-xy)
=2(10+3)=26
vậy x^3+y^3=26
ta có: \(x+y+z=a\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=a^2\)
\(\Rightarrow b+2\left(xy+yz+xz\right)=a^2\Rightarrow xy+yz+xz=\frac{a^2-b}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{c}\Rightarrow c\left(xy+yz+xz\right)=xyz\)
Ta có:\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)
\(=a\left(b-\frac{a^2-b}{2}\right)+\frac{3c\left(a^2-b\right)}{2}\)
Ta có x^3 + y^3 = ( x + y )(x^2 - xy + y^2 ) (1)
( x+ y )^2 = a^2
=> x^2 + 2xy + y^2 = a^2
=> b + 2xy = a^2
=> 2xy = a^2 - b
=> xy = \(\frac{a^2-b}{2}\)
Thay vào (1) ta có
x^3 + y^3 = ( x + y)( x^2 - xy + y^2 ) = a ( b - \(\frac{a^2-b}{2}\) ) = \(a.\left(\frac{2b-a^2+b}{2}\right)=a\cdot\frac{3b-a^2}{2}\)
a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)
b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)
\(x^3+y^3\) \(=\left(x+y\right)\left(x^2-xy+y^2\right)\) \(=a.\left(b-xy\right)\) \(=ab\) \(-\) axy
Có : \(x+y=a\Rightarrow x^2+2xy+y^2=a^2\)
\(\Leftrightarrow b+2xy=a^2\)
\(\Leftrightarrow xy=\frac{a^2-b}{2}\)
Lại có :
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a.\left(b-xy\right)=ab-a.\frac{a^2-b}{2}\)