K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4

TK:

Để giải hệ phương trình này, chúng ta sẽ sử dụng các phương pháp đơn giản hóa.

Trước tiên, ta quan sát rằng |x + 2| là giá trị tuyệt đối của biểu thức x + 2, nó sẽ nhận giá trị từ âm vô cùng đến 2 khi x từ âm vô cùng đến âm 2, và nó sẽ nhận giá trị từ 0 đến dương vô cùng khi x từ -2 đến dương vô cùng.

Do đó, để đơn giản hóa vấn đề, ta sẽ xem x + 2 là một số nguyên dương, gọi là a. Khi đó, |x + 2| = a, và x + 2 có thể bằng a hoặc -a.

Ta sẽ có hai trường hợp:

1. Khi x + 2 = a:
\[ y = 6 - |x + 2| = 6 - a \]

2. Khi x + 2 = -a:
\[ y = 6 - |x + 2| = 6 - (-a) = 6 + a \]

Bây giờ, ta sẽ thay a bằng x + 2:
1. Khi x + 2 = a:
\[ y = 6 - a \]
\[ y = 6 - (x + 2) \]
\[ y = 6 - x - 2 \]
\[ y = 4 - x \]

2. Khi x + 2 = -a:
\[ y = 6 + a \]
\[ y = 6 + (x + 2) \]
\[ y = 6 + x + 2 \]
\[ y = 8 + x \]

Bây giờ, chúng ta sẽ sử dụng hệ phương trình ban đầu để giải x và y:
\[ \begin{cases} x + y = 4 \\ y = 4 - x \end{cases} \]

Thay y trong phương trình thứ nhất bằng 4 - x:
\[ x + (4 - x) = 4 \]
\[ 4 = 4 \]

Phương trình trên đúng với mọi giá trị của x và y.

Vậy, hệ phương trình có vô số nghiệm và không có nghiệm cụ thể.

4
456
CTVHS
29 tháng 4

Bài này để lớp 6 thì ko đúng

31 tháng 7 2023

\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}=\dfrac{28:7}{49:7}=\dfrac{4}{9}\\ Vậy:x=\dfrac{4.9}{4}=9\\ y=\dfrac{4.21}{9}=\dfrac{28}{3}\)

31 tháng 7 2023

\(\dfrac{x}{2}=\dfrac{3}{y}\\ \Leftrightarrow x.y=2.3=6\\ Vậy:\left[{}\begin{matrix}\left(x;y\right)=\left(1;6\right)=\left(6;1\right)\\\left(x;y\right)=\left(2;3\right)=\left(3;2\right)\end{matrix}\right.\)

22 tháng 12 2021

a  tìm số nguyên x biết (x-5).(y-7)=1 
   (x-5).(y-7)=1 = 1.1 = -1.(-1) 
   TH1,
   x-5 = 1, y-7 = 1
   => x = 6, y = 8
   TH2

  x -5 = -1, y - 7 = -1
=> x = 4, y = 6

 

27 tháng 7 2023

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{80}{1}=80\)

\(\Rightarrow\dfrac{x}{7}=80\Rightarrow x=80\cdot7=560\)

\(\Rightarrow\dfrac{y}{6}=80\Rightarrow y=80\cdot6=480\)

b) Áp dụng tính chất dãy tỉ số bằng nhau ta có::

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{12}{11}\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{12}{11}\Rightarrow x=\dfrac{4\cdot12}{11}=\dfrac{48}{11}\)

\(\Rightarrow\dfrac{y}{7}=\dfrac{12}{11}\Rightarrow y=\dfrac{7\cdot12}{11}=\dfrac{84}{11}\)

Mình làm mẫu 2 câu thôi nhé

1 tháng 8 2017

\(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x}{10}=\frac{y}{20}\) (*)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)(**)

Từ (*) và (**) \(\Rightarrow\frac{x}{10}=\frac{y}{20}=\frac{z}{24}=k\)\(\Rightarrow x=10k\)\(y=20k\)\(z=24k\)

Ta có : \(x+y+z=486\Rightarrow10k+20k+24k=486\Rightarrow54k=486\Rightarrow k=\frac{486}{54}=9\)

Do đó : \(\frac{x}{10}=9\Rightarrow x=9.10=90\)

             \(\frac{y}{20}=9\Rightarrow y=9.20=180\)

           \(\frac{z}{24}=9\Rightarrow z=9.24=216\)

Vậy .....

1 tháng 8 2017

\(\frac{x}{2}\)\(\frac{y}{4}\)\(\frac{y}{5}\)\(\frac{z}{6}\) và x+y+z=486

\(\Rightarrow\)\(\frac{x}{10}\)\(\frac{y}{20}\)\(\frac{y}{20}\)\(\frac{z}{24}\)

\(\Rightarrow\)\(\frac{x}{10}\)\(\frac{y}{20}\)\(\frac{z}{24}\)và x+y+z=486

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}\)\(\frac{y}{20}\)\(\frac{z}{24}\)=\(\frac{x+y+Z}{10+20+24}\)\(\frac{486}{54}\)= 9

Suy ra:       \(\frac{x}{10}\)= 9\(\Rightarrow\)x= 9.10=90

                 \(\frac{y}{20}\)= 9\(\Rightarrow\)y= 20.9= 180

                  \(\frac{z}{24}\)= 9\(\Rightarrow\)z= 24.9= 216

Vậy x= 90; y=180; z= 216

27 tháng 7 2023

1) \(x+y=10\) mà \(x=y\) nên: \(x=y=\dfrac{10}{2}=5\)

2) \(2x+3y=180\) mà \(x=y\)

Ta có: \(2y+3y=180\Rightarrow5y=180\Rightarrow y=180:5=36\)

Vậy \(x=y=36\)

3) \(x+y=180\) mà \(x=y\) nên: \(x=y=\dfrac{180}{2}=90\)

4) \(3x+5y=13\) mà \(y=2x\) ta có:

\(3x+5\cdot2x=13\Rightarrow13x=13\Rightarrow x=1\)

\(y=2x=2\cdot1=2\)

Các câu còn lại bạn làm tương tự

28 tháng 8 2020

1/ (x+1)(y+2) =5

Do x;y thuộc N nên x+1 ; y+2 cũng thuộc N

\(TH1:\Leftrightarrow\hept{\begin{cases}x+1=1\\y+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-1\\y=5-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=3\end{cases}}}\\\)

\(TH2:\Leftrightarrow\hept{\begin{cases}x+1=5\\y+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5-1\\y=1-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=-1\end{cases}}}\)

x04
y3 -1

mà x;y\(\in\)N nên x;y=0;3

Các bài khác bạn làm tương tự nha! (vì mk viết rất chậm )

28 tháng 8 2020

\(\left(x+1\right)\left(y+3\right)=6\)

\(\Leftrightarrow x+1;y+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x + 11-12-23-36-6
y + 36-63-32-21-1
x0-21-32-45-7
y3-90-6-1-5-2-4