Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)
\(x^2-y^2=-4\\ \Rightarrow9k^2-25k^2=-4\\ \Rightarrow-16k^2=-4\Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6;y=10\\x=-6;y=-10\end{matrix}\right.\)
\(\frac{x}{3}=\frac{y}{9}\) và \(y-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{9}=\frac{y-x}{9-3}=\frac{12}{6}=2\)
Do đó:
\(\frac{x}{3}=2\Rightarrow x=3.2=6\)
\(\frac{y}{9}=2\Rightarrow y=9.2=18\)
Vậy \(x=6;y=18\)
\(\frac{x}{3}\)=\(\frac{y}{9}\) và x-y=12
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}\)=\(\frac{y}{9}\)=\(\frac{x-y}{3-9}\)=\(\frac{12}{-6}\)=\(\frac{-2}{1}\)
==>x=\(\frac{3.-2}{1}\)=-6
y=\(\frac{9.-2}{1}\)=-18
Hok tốt!
Ta có 7x = 3y
=> x/3 = y/7
=> x/3 = y/7 = (x-y) / (3-7) = 16 / -4 = -4
=> x = -4.3 = -12
=> y = -4.7 = -28
Ta có : 5.x = 3.y
=. \(\dfrac{x}{3}=\dfrac{y}{5}\)( *)
Đặt (*) =k
=>\(\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
Mà x + y =16 , ta có :
3k + 5k = 16
=> 8. k=16
=> k =2
=> \(\left\{{}\begin{matrix}x=3.2\\y=5.2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=6\\y=10\end{matrix}\right.\)
Bài 1: \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)
\(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))
(\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)
(\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)
(\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2
\(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\)
TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\)
TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy (\(x;y\) ) = (- \(\dfrac{1}{2}\); \(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))
\(\frac{x}{2}=\frac{y}{3}\) và \(\frac{y}{4}=\frac{z}{5}\)
Suy ra:
\(\frac{x}{2.4}=\frac{y}{3.4}\) và \(\frac{y}{4.3}=\frac{z}{5.3}\)
Hay là:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{4+12+15}=\frac{10}{31}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{10}{31}\)
\(\Rightarrow x=4.\frac{10}{31}=\frac{40}{31}\)
\(y=12.\frac{10}{31}=\frac{120}{31}\)
\(z=15.\frac{10}{31}=\frac{150}{31}\)
Ta có : \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}\)
\(\Rightarrow\frac{x\times y}{\frac{1}{3}\times\frac{1}{5}}=\frac{1500}{\frac{1}{15}}=22500\)
\(\Rightarrow\frac{x}{\frac{1}{3}}=22500\Rightarrow x=22500\times\frac{1}{3}=7500\)
\(\Rightarrow\frac{y}{\frac{1}{5}}=22500\Rightarrow y=22500\times\frac{1}{5}=4500\)
a) \(\left(x-1\right)\left(y+2\right)=5\)
Th1 : \(\hept{\begin{cases}x-1=-5\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x-1=-1\\y+2=-5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-7\end{cases}}}\)
TH3 : \(\hept{\begin{cases}x-1=5\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
TH4 : \(\hept{\begin{cases}x-1=1\\y+2=5\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
Từ đẳng thức \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{3}=\frac{3x}{9}=\frac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{3x}{9}=\frac{y}{5}=\frac{3x-y}{9-5}=\frac{24}{4}=6\)
\(\Rightarrow\hept{\begin{cases}x=3.6\\x=5.6\end{cases}\Rightarrow\hept{\begin{cases}x=18\\y=30\end{cases}}}\)
Vậy x = 18 ; y = 30