Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt⇔y2(x2−7)=(x+y)2(1)
Phương trình đã cho có nghiệm x=y=0x=y=0
Xét x,y\ne0x,y≠0, từ (1)(1) suy ra x^2-7x2−7 là một số chính phương
Đặt x^2-7=a^2x2−7=a2 ta có:
\left(x-a\right)\left(x+a\right)=7(x−a)(x+a)=7 từ đây tìm được x
Vậy (x,y)=(0,0);(4,-1);(4,2);(-4,1);(-4;-2)(x,y)=(0,0);(4,−1);(4,2);(−4,1);(−4;−2)
<=>x3+x3-6x2+12x-8=8x3-24x2+24x-8
<=>-6x3+18x2-12x=0
<=>-x(6x2-18x+12)=0
<=>-x(6x2-6x-12x+12)=0
<=>-x(6x-12)(x-1)=0
<=>x=0;2;1
Ta có \(x^3+\left(x-2\right)^3=\left(2x-2\right)^3\)
\(\Rightarrow x^3+\left(x-2\right)^3-\left(2x-2\right)^3=0\)
\(\Rightarrow x^3+\left(x-2\right)^3+\left(2-2x\right)^3=0\)
Đặt \(x=a;x-2=b;2-2x=c\)
\(a+b+c=x+x-2+2-2x=0\)
Xét bài toán phụ \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
\(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3a^2b-3ab^2\)
= \(\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc\)
\(\Rightarrow x^3+\left(x-2\right)^3+\left(2-2x\right)^3=3x\left(x-2\right)\left(2-2x\right)=0\)
\(\Rightarrow x=0\) hoặc \(x-2=0\Rightarrow x=2\) hoặc \(2-2x=0\Rightarrow2x=2\Rightarrow x=1\)
Vậy phương trình có tập nghiệm \(S=\left\{0;2;1\right\}\)
\(xy^2+\left(2x-27\right)y+x=0\)
Xét phương trình theo ẩn y. Để phương trình có nghiệm thì
\(\Delta_y=\left(2x-27\right)^2-4x.x\ge0\)
\(\Rightarrow1\le x\le6\)
Thế lần lược tực 1 tới 6 vô ta chỉ nhận \(\left(x;y\right)=\left(6;2\right)\)
Bài 2:
\(M=8\left(x^2+y^2+2x^2y+2xy^2\right)-5\left(x+y\right)+2018\)
\(M=8\left[\left(x+y\right)^2-2xy+2xy\left(x+y\right)\right]-5+2018\)
\(=8\left[1-2xy+2xy\right]+2013\)
=8+2013
=2021
a)4x3y-6xy2
=2xy(2x2-3y)
b)4x2-4x+1
=(2x)2-2*2x*1+12
=(2x-1)2
c)x2-2xy-3x+6y
=x(x-2y)-3(x-2y)
=(x-3)(x-2y)
d)x3-2x2+x-xy2
=x(x2-2x+1-y2)
=x[(x-1)2-y2]
=x(x-y-1)(x+y-1)
e)x2-x+y2-y-x2y2+xy
=xy2-x+y2-y-x2y2+x2-xy2+xy
=(xy2-x+y2-y)-x(xy2-x+y2-y)
=(1-x)(xy2-x+y2-y)
=(1-x)[xy2+xy+y2-(xy+y+x)]
=(1-x)[y(xy+y+x)-(xy+y+x)]
=(1-x)(y-1)(xy+y+x)
Bài 2:
a)x(x-y)+y(y-x)
=x2-xy+y2-xy
=(x-y)2.Tại x=53 và y=3 ta có:
N=(53-3)2=502=2500
b) x2013-53x2012+103x2011-51x2010
=x2010(x3-53x2+103x-51)
=x2010[x3-2x2+x-51x2+102x-51]
=x2010[x(x2-2x+1)-51(x2-2x+1)]
=x2010(x-51)(x2-2x+1).Tại x=51 ta có:
M=512010(51-51)(512-2*51+1)=0