K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

Áp dụng BĐT AM-GM ta có:

\(\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\). Cộng theo vế ta có:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\le\frac{x+y+y+z+x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)

Do đó ta có: \(x+y+z\ge1\).Áp dụng BĐT Cauchy-Schwarz dạng Engel ta cũng có:

\(A\ge\frac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)