K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

Câu 17 :

- Ta có : AD là đường phân giác của tam giác ABC .\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

- Áp dụng tính chất dãy tỉ số bằng nhau :\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{12}{BD}=\dfrac{16}{CD}\)

\(=\dfrac{12+16}{BD+CD}=\dfrac{28}{14}=2=\dfrac{16-12}{CD-BD}\)

\(\Rightarrow CD-BD=\dfrac{4}{2}=2\)

- Đáp án C.

 

 

 

 

 

9 tháng 5 2021

Câu 16 :

- Ta có : \(\widehat{COB}=2\widehat{BAC}=120^o\)

- Ta lại có : \(S=S_{\stackrel\frown{BC}}-S_{OBC}=\dfrac{\pi R^2.120}{360}-\dfrac{1}{2}R.R.Sin120=\dfrac{\pi R^2}{3}-\dfrac{R^2\sqrt{3}}{4}\)

\(=\dfrac{R^2\left(4\pi-3\sqrt{3}\right)}{12}\) ( đvdt )

Đáp án D

huhu khocroi
Lớp 10 rồi mà vẫn không biết làm bất đẳng thức lớp 9  :'((

8 tháng 4 2021

Anh đừng buồn bởi đây là những câu hỏi 0.5 đ ở cuối đề thi và có thể mấy bạn học sinh khá hay giỏi mới làm được đó là lớp 9 còn anh lớp  10 thì .... chắc quyên thôi ...

C889:

Áp dụng BĐT Cauchy-Schwars dạng Engel, ta có:

\(\dfrac{x^2}{y}+\dfrac{y^2}{x}\ge\dfrac{\left(x+y\right)^2}{x+y}=\dfrac{4^2}{4}=4\)

Dấu"=" xảy ra khi x=y=2

29 tháng 4 2021

[Toán.C889 _ 29.4.2021]

A= \(\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy}\)

   =\(\dfrac{4\left(16-3xy\right)}{xy}\)

   =\(\dfrac{64}{xy}-12\)

mà xy\(\le\)4

nên \(\dfrac{64}{xy}\ge16\)

vậy A \(\ge\)16-12=4

dấu = xảy ra khi và chỉ khi x=y=2

Câu 1: 

PT \(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

 Vậy \(S=\left\{2;3\right\}\)

Câu 2:

a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=10\\3x+4y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{5-x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(-5;5\right)\)

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\y=2x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 Vậy \(\left(x;y\right)=\left(2;-3\right)\)

2 tháng 4 2021

Câu 5:

Đặt \(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta có:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bất đẳng thức Cosi ta có:

\(2xy\le\dfrac{\left(x+y\right)^2}{2}\le\dfrac{1}{2}\Rightarrow\dfrac{1}{2xy}\ge2\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

1 tháng 4 2021

5.

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\Rightarrow0\le c\le1\Rightarrow1-\dfrac{c}{2}>0\)

\(P=bc+ca+ab\left(1-\dfrac{c}{2}\right)\ge0\)

\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị

\(P=c\left(a+b\right)+ab\left(1-\dfrac{c}{2}\right)\le c\left(3-c\right)+\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le3c-c^2+\dfrac{\left(3-c\right)^2}{4}\left(1-\dfrac{c}{2}\right)\)

\(P\le\dfrac{5}{2}-\dfrac{c^3}{8}+\dfrac{3c}{8}-\dfrac{1}{4}=\dfrac{5}{2}-\dfrac{1}{8}\left(c-1\right)^2\left(c+2\right)\le\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(a=b=c=1\)

1 tháng 4 2021

Cách 2 phần tìm max bài 5:

Áp dụng BĐT: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow abc\ge-8abc+12\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow3abc+27\ge12\left(ab+bc+ca\right)-6abc\)

\(\Leftrightarrow ab+bc+ca-\dfrac{1}{2}abc\le\dfrac{abc}{4}+\dfrac{9}{4}\le\dfrac{1}{4}.\left(\dfrac{a+b+c}{3}\right)^3+\dfrac{9}{4}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

3 tháng 4 2021

undefined

4 tháng 4 2021

accc, mọi người , đây là ảnh chụp của mathtype hổng phải copy đâu nhaa

19 tháng 11 2016

là mất

19 tháng 11 2016

có pjair là mất không nha