K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

Ta có : \(x\left|x+2\right|\ge x^2-x-6\)

\(\Rightarrow x\left|x+2\right|-x^2+x+6\ge0\)

TH1 : \(x+2\ge0\left(x\ge-2\right)\)

BPt \(\Leftrightarrow x\left(x+2\right)-x^2+x+6\ge0\)

\(\Leftrightarrow x^2+2x-x^2+x+6\ge0\)

\(\Leftrightarrow3x+6\ge0\)

\(\Leftrightarrow x\ge-\dfrac{6}{3}=-2\)

- Kết hợp điều kiện  \(\Rightarrow x\ge-2\)

TH2 : \(x+2< 0\left(x< -2\right)\)

BPt \(\Leftrightarrow-x\left(x+2\right)-x^2+x+6\ge0\)

\(\Leftrightarrow-x^2-2x-x^2+x+6\ge0\)

\(\Leftrightarrow-2x^2-x+6\ge0\)

\(\Leftrightarrow-2\le x\le\dfrac{3}{2}\)

- Kết hợp điều kiện \(\Rightarrow\)Không có x thỏa mãn .

Vậy bpt có nghiệm \(x=[-2;+\infty)\) 

3 tháng 2 2021

Trả lời câu trước r nha bn

16 tháng 12 2021

ĐKXĐ: ...

\(\sqrt{x^2-x-30}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)

\(\Leftrightarrow\sqrt{\left(x+5\right)\left(x-6\right)}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)(*)

đặt \(\sqrt{x+5}=a\ge0;\sqrt{x-6}=b\ge0\)

\(\text{pt(*)}\Leftrightarrow ab-3a-2b=-6\\ \Leftrightarrow\Leftrightarrow ab-3a-2b+6=0\\ \Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\\ \Leftrightarrow\left(a-2\right)\left(b-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=2\\\sqrt{x-6}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+5=4\\x-6=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=15\left(tm\right)\end{matrix}\right.\)

13 tháng 2 2018

\(1B\backslash2B\backslash3B\)

30 tháng 5 2016

PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2. 
Khi đó: x^2 + 9 = t - 9(x-1)/2 
x^2 + 9x = t + 9(x-1)/2 
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2 
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2 
<=> t^2 = (169/4)(x-1)^2 
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1) 
<=> 2t =13x -13 hoặc 2t =-13x + 13 
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13 
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0 

PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là: 
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2. 
 

30 tháng 5 2016

cách 2:đặt x-1=k

pt trở thành (k+1)(k2+2k+10)(k+10)=22k2

<=>(k2+2k+10)(k2+11k+10)=22k2

tự làm tiếp

2 tháng 3 2020

Giúp e vs cả nhà ơii 🤧

NV
29 tháng 9 2019

Biến đổi tương đương:

\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

29 tháng 9 2019

A no thơ quay nhưng lại không hay:P(Another way)

\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)

\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)

Đẳng thức xảy ra khi x =y = z

P/s: cách này làm màu thôi :D

NV
30 tháng 9 2019

Biến đổi tương đương:

\(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)