\(x\left(x^2+9\right)\left(x+9\right)=22\left(x-1\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2016

PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2. 
Khi đó: x^2 + 9 = t - 9(x-1)/2 
x^2 + 9x = t + 9(x-1)/2 
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2 
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2 
<=> t^2 = (169/4)(x-1)^2 
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1) 
<=> 2t =13x -13 hoặc 2t =-13x + 13 
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13 
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0 

PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là: 
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2. 
 

30 tháng 5 2016

cách 2:đặt x-1=k

pt trở thành (k+1)(k2+2k+10)(k+10)=22k2

<=>(k2+2k+10)(k2+11k+10)=22k2

tự làm tiếp

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
NV
26 tháng 10 2019

a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)

b/

\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)

\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)

\(\Leftrightarrow\left|x+2\right|-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)

c/

\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)

\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

d/ ĐKXĐ: ...

\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)

Đặt \(\frac{\left|x-2\right|}{x-1}=a\)

\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)

e/ ĐKXĐ: ...

Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)

\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)

NV
25 tháng 3 2019

Câu 1:

a/ \(x\ge-11\)

Đặt \(\sqrt{x+11}=a\ge0\Rightarrow11=a^2-x\), pt đã cho trở thành:

\(x^2+a=a^2-x\Leftrightarrow x^2-a^2+x+a=0\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

TH1: \(x+a=0\Leftrightarrow x+\sqrt{x+11}=0\Leftrightarrow-x=\sqrt{x+11}\)

\(\Leftrightarrow\left[{}\begin{matrix}-x\ge0\\x^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2-x-11=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-3\sqrt{5}}{2}\)

TH2: \(x-a+1=0\Leftrightarrow x+1=\sqrt{x+11}\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\\left(x+1\right)^2=x+11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-10=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{41}}{2}\)

b/ \(\sqrt{9+x}=x-9\Leftrightarrow\left\{{}\begin{matrix}x-9\ge0\\9+x=\left(x-9\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x^2-19x+72=0\end{matrix}\right.\) \(\Rightarrow x=\frac{19+\sqrt{73}}{2}\)

NV
25 tháng 3 2019

Câu 2:

a/

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-1\right)\left(x-4\right)}=\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-4\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -1\\x>4\\1< x< 3\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-1< x< 1\\3< x< 4\end{matrix}\right.\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f\left(x\right)\) ko xác định tại \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

b/ \(h\left(x\right)=\frac{-x^2+3x-1}{\left(x^2-2x+3\right)\left(x+2\right)}\)

Lập bảng xét dấu ta được:

\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -2\\\frac{3-\sqrt{5}}{2}< x< \frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-2< x< \frac{3-\sqrt{5}}{2}\\x>\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)=0\) tại \(x=\frac{3\pm\sqrt{5}}{2}\)

\(f\left(x\right)\) ko xác định tại \(x=-2\)

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm