Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
a: =>7/9:x=1/18-2/9=1/18-4/18=-3/18=-1/6
=>x=-7/9:1/6=-7/9*6=-42/9=-14/3
b: =>x*7/5=2/15+2/5=8/15
=>x=8/15:7/5=8/21
c: =>x-1/2=3/14:4/7=3/8
=>x=3/8+4/8=7/8
d: =>0,4x+0,3x-0,2x=0,7
=>0,5x=0,7
=>x=1,4
Chỉ làm bài khó thôi nhé:::::::::::::::
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2016}{2018}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x.\left(x+1\right)}=\frac{2016}{2018}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2016}{2018}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{1013}{2018}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1013}{2018}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1013}{2018}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2018}\Rightarrow x+1=2018\Rightarrow x=2017\)
a) \(\Leftrightarrow\dfrac{3}{2}:x=\dfrac{1}{2}\\ \Leftrightarrow x=\dfrac{3}{2}:\dfrac{1}{2}\\ \Leftrightarrow x=3\)
b) \(\Leftrightarrow x=\dfrac{7}{9}-\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{1}{9}\)
c) \(\Leftrightarrow x=\dfrac{8}{7}:\dfrac{6}{7}\\ \Leftrightarrow x=\dfrac{4}{3}\)
d) \(\Leftrightarrow x=\dfrac{9}{5}-\dfrac{3}{7}\\ \Leftrightarrow x=\dfrac{48}{35}\)
a) x = 3
b) x = \(\dfrac{1}{9}\)
c) x = \(\dfrac{4}{3}\)
d)\(\dfrac{48}{35}\)
Câu 1:
$(x+3)+(x+7)+(x+11)+...+(x+123)=\frac{3937}{2}$
$(x+x+...+x)+(3+7+11+...+123)=\frac{3937}{2}$
Số lần xuất hiện của $x$: $(123-3):4+1=31$. Suy ra:
$31\times x+(123+3)\times 31:2=\frac{3937}{2}$
$31\times x+1953=\frac{3937}{2}$
$31\times x=15,5$
$x=15,5:31=0,5$
Câu 2:
Để biểu thức lớn nhất thì $A-16$ là số tự nhiên nhỏ nhất. Mà $A-16\neq 0$ nên $A-16$ nhỏ nhất bằng 1.
$\Rightarrow A=17$.
a) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\)
\(=\dfrac{5}{7}\times1\)
\(=\dfrac{5}{7}\)
b) \(\dfrac{1}{10}+\dfrac{5}{9}+\dfrac{4}{9}+\dfrac{9}{10}-1\)
\(=\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{1}{10}+\dfrac{9}{10}-1\right)\)
\(=1+0\)
\(=1\)
c) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}+\dfrac{2}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\dfrac{2}{7}\)
\(=\dfrac{5}{7}+\dfrac{2}{7}\)
\(=1\)
d) \(\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{4}{7}\)
\(=\left(\dfrac{2}{8}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{4}{7}\right)\)
\(=\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+1\)
\(=\dfrac{1}{2}+1\)
\(=\dfrac{3}{2}\)
e) \(\dfrac{4}{5}+\dfrac{3}{10}+\dfrac{2}{10}+0,7\)
\(=\dfrac{4}{5}+\dfrac{5}{10}+\dfrac{7}{10}\)
\(=\dfrac{4}{5}+\dfrac{12}{10}\)
\(=\dfrac{4}{5}+\dfrac{6}{5}\)
\(=\dfrac{10}{5}\)
\(=2\)
g) \(362\times728+326\times272\)
\(=326\times\left(728+272\right)\)
\(=326\times1000\)
\(=326000\)
c] 7 * x + 8 * x + 9 * x + .... + 100 * x = 1025
(7+8+9+...+100)*x=1025
Coi A= 7+8+...+100
Số các số hạng của A là:
(100-7):1+1=94 (số)
=>A=(100+7)*94:2=5029
Ta lại có:
5029*x=1025
=>x=1025:5019=1025/5019
a, \(x.\left(\frac{3}{2}+\frac{1}{4}-\frac{1}{2}\right)=x.\left(\frac{6}{4}+\frac{1}{4}-\frac{2}{4}\right)=\frac{10}{9}\)
\(x.\frac{5}{4}=\frac{10}{9}\)
\(x=\frac{10}{9}:\frac{5}{4}=\frac{10}{9}.\frac{4}{5}=\frac{8}{9}\)