Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
góc ABD=góc AKB
góc A chung
=>ΔABD đồng dạng với ΔAKB
=>AB/AK=AD/AB
=>AB^2=AK*AD
AB,AC là tiếp tuyến
=>AB=AC
=>OA là trung trực của BC
=>OB^2=OH*OA; AB^2=AH*AO
OH*OA+AD*AK=OB^2+AB^2=OA^2
AD*AK=AH*AO=AB^2
=>ΔAHD đồng dạng với ΔAKO
=>góc AHD=góc AKO=góc OKD=góc ODK(ΔODK cân tại O)
=>góc OAD=góc HDO+góc ODA
Gọi DM vuông góc OB và cắt BK tại E
ME//AB
=>ME/BP=KM/KP=KE/KB
DE//AB
=>KE/KB=KP/KA
=>KE/AB=KM/KP=KD/KA
=>KE/KB=KD/KA
Xet ΔAPK có
DM//AP
KM/KP=KD/KA
=>K,M,P thẳng hàng
\(\widehat{I_1}=\widehat{I_2}=180-\left(\widehat{K_2}+\widehat{IOK}\right)\)mà \(\widehat{IOK}=180^0-\widehat{BAC}\)Do AO là phân giác của \(\widehat{BAC}\)\(\Rightarrow\widehat{IOK}=90^0-\widehat{A_1}\)Vì vậy ta có :\(\widehat{I_2}=180-\left(\widehat{K_2}+90^0-\widehat{A_1}\right)=90^0+\widehat{A_1}-\widehat{K}_2\left(4\right)\)
từ 3 và 4 ta có \(\widehat{I_1}=\widehat{KOQ}\)
Vì \(\widehat{APO}=\widehat{AQP}\)\(\Rightarrow\Delta IPO=\Delta OQK\)
\(\Rightarrow\frac{IP}{OP}=\frac{OQ}{QK}\Leftrightarrow IP.QK=OQ.OP\)Mà \(OP=OQ=\frac{PQ}{2}\)\(\Rightarrow IP.QK=\left(\frac{PQ}{2}\right)^2\Leftrightarrow PQ^2=4IP.QK\le\left(IP+QK\right)^2\)\(\Rightarrow IP+QK\ge PQ\)