K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

A B C K Q D I P O H 1 1 2 1 2 3 1 2 E

  1. Do AB , AC là tiếp tuyến của đường tròn (O) Nên : \(\hept{\begin{cases}OB⊥AB\\OC⊥AC\end{cases}\Rightarrow\widehat{ABO}=\widehat{ACO}=90^0}\)\(\Rightarrow ABOC\)Nội tiếp đường tròn đường kính AO
  2. Ta có : \(\hept{\begin{cases}\widehat{BAE}chung\\\widehat{BEA}=\widehat{ABD}\end{cases}}\Rightarrow\Delta ABD\approx\Delta AEB\)\(\frac{AE}{AB}=\frac{AB}{AD}\Rightarrow AB^2=AE.AD\left(1\right)\)Mà ta lại có tam giác vuông \(\Delta ABO\)Có BH là đường cao ( tính chất của tiếp tuyến ) \(\Rightarrow AH.AO=AB^2\left(2\right)\)từ 1 và 2 \(\Rightarrow AH.AO=AD.AE\left(dpcm\right)\)
  3. Theo tính chất của tiếp tuyến luôn có \(\widehat{I_1}=\widehat{I_2};\widehat{K_1}=\widehat{K_2};\widehat{0_3}=\widehat{0_2}\) Do \(\widehat{A_1}=\widehat{0_1}\)(Cùng phụ góc \(\widehat{AQO}\)) mặt khác \(\widehat{KOQ}=\widehat{O_1}+\widehat{O_2}=\widehat{A_1}+90^0-\widehat{K_1}\left(3\right)\)

       \(\widehat{I_1}=\widehat{I_2}=180-\left(\widehat{K_2}+\widehat{IOK}\right)\)mà \(\widehat{IOK}=180^0-\widehat{BAC}\)Do AO là phân giác của \(\widehat{BAC}\)\(\Rightarrow\widehat{IOK}=90^0-\widehat{A_1}\)Vì vậy ta có :\(\widehat{I_2}=180-\left(\widehat{K_2}+90^0-\widehat{A_1}\right)=90^0+\widehat{A_1}-\widehat{K}_2\left(4\right)\)

từ 3 và 4 ta có \(\widehat{I_1}=\widehat{KOQ}\)

Vì \(\widehat{APO}=\widehat{AQP}\)\(\Rightarrow\Delta IPO=\Delta OQK\)

\(\Rightarrow\frac{IP}{OP}=\frac{OQ}{QK}\Leftrightarrow IP.QK=OQ.OP\)Mà \(OP=OQ=\frac{PQ}{2}\)\(\Rightarrow IP.QK=\left(\frac{PQ}{2}\right)^2\Leftrightarrow PQ^2=4IP.QK\le\left(IP+QK\right)^2\)\(\Rightarrow IP+QK\ge PQ\)

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

góc ABD=góc AKB

góc A chung

=>ΔABD đồng dạng với ΔAKB

=>AB/AK=AD/AB

=>AB^2=AK*AD

AB,AC là tiếp tuyến

=>AB=AC
=>OA là trung trực của BC

=>OB^2=OH*OA; AB^2=AH*AO

OH*OA+AD*AK=OB^2+AB^2=OA^2

AD*AK=AH*AO=AB^2

=>ΔAHD đồng dạng với ΔAKO

=>góc AHD=góc AKO=góc OKD=góc ODK(ΔODK cân tại O)

=>góc OAD=góc HDO+góc ODA

Gọi DM vuông góc OB và cắt BK tại E

ME//AB

=>ME/BP=KM/KP=KE/KB

DE//AB

=>KE/KB=KP/KA

=>KE/AB=KM/KP=KD/KA

=>KE/KB=KD/KA

Xet ΔAPK có

DM//AP

KM/KP=KD/KA

=>K,M,P thẳng hàng