K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

ta tính \(y'=3x^2-4x+1\)

\(y'=0\Rightarrow3x^2-4x+1=0\Rightarrow x=1;x=\frac{1}{3}\)

ta có 

ta có trong khoảng 2 nghiệm thì y' cùng dấu với hệ số a, ngoài khoảng 2 nghiệm trái dấu với hệ số a

suy ra f'(x)>0 với \(x\in\left(-\infty;\frac{1}{3}\right)\cup\left(1;+\infty\right)\) suy ra hàm số  đồng biến trên \(\left(-\infty;\frac{1}{3}\right)\cup\left(1;+\infty\right)\)

lại có f'(x)<0 với \(x\in\left(\frac{1}{3};1\right)\) suy ra hàm số nghịch biến trên \(\left(\frac{1}{3};1\right)\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2022

Lời giải:

TXĐ: (-\infty; -1)\cup (-1;+\infty)$
$y'=\frac{1}{(x+1)^2}-2$

$y'>0\Leftrightarrow (x+1)^2< \frac{1}{2}\Leftrightarrow \frac{-1}{\sqrt{2}}-1< x< \frac{1}{\sqrt{2}}-1$

$y'< 0\Leftrightarrow (x+1)^2> \frac{1}{2}\Leftrightarrow x> \frac{1}{\sqrt{2}}-1$ hoặc $x< \frac{-1}{\sqrt{2}}-1$
Vậy hàm số:

Đồng biến trên $(\frac{-1}{\sqrt{2}}-1; \frac{1}{\sqrt{2}}-1)$ và nghịch biến trên $(\frac{1}{\sqrt{2}}-1; +\infty)\cup (-\infty; \frac{-1}{\sqrt{2}}-1)$

6 tháng 4 2019

Chọn B

Đặt 

Bài toán quy về tìm giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0].

Từ bảng biến thiên ta có giá trị lớn nhất của hàm số y = f(t) trên đoạn [-2;0] là 3.

Vậy giá trị lớn nhất của hàm số f(sin x -1) bằng 3.

18 tháng 8 2017

7 tháng 6 2021

\(\left(\frac{2x-1}{x+2}\right)'=\frac{5}{\left(x+2\right)^2}>0\)

Vậy hàm số \(y=\frac{2x-1}{x+2}\) đồng biến trên R. Chọn A.

DD
7 tháng 6 2021

A. là hàm phân thức bậc nhất trên bậc nhất nên không đồng biến trên \(ℝ\).

B., D. là đa thức, có hệ số cao nhất âm nên cũng không thể đồng biến trên \(ℝ\).

C>: \(\left(x^3+2x+1\right)'=3x^2+2>0,\forall x\inℝ\).

Ta chọn C

19 tháng 9 2017