Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)
Dễ vcl giải
Có a²(b+c)-b²(a+c)=2013-2013=0
a²b+a²c-b²a-b²c=0
a²b-b²a+a²c-b²c=0
ab(a-b)+c(a²-b²)=ab(a-b)+c(a-b)(a+b)=0
(a-b)[ab+c(a+b)]=0
Suy ra 1 trong 2 số =0 mà a và b khác nhau nên ab+c(a+b)=0
Suy ra ab và c(a+b) là 2 số đối suy ra ab×c và c×c(a+b) là 2 số đối suy ra abc và c²(a+b) là 2 số đối
=>c²(a+b)-abc=0
<=>c²(a+b)=-abc
Lại có ab + c(a+b)=0 => ab + ac + cb =0
<=> a(b+c)+cb=0
<=> a²(b+c) + abc =0
=>abc =0-2013=-2013=> abc = -2013
Nên c²(a+b)=-(abc)=-(-2013)=2013 .
Vậy c²(a+b)=2023 ezzzz
Bài này dễ lớp 6 mà
Lời giải:
$a^2(b+c)=b^2(b+c)$
$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$
$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$
Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$
$\Rightarrow (a+b)(b+c)=0$
Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))
$\Rightarrow a+b=0$
$\Rightarrow H=c^2(a+b)=0$
Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath
Lời giải:
$P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=0-2(ab+bc+ac)=-2(ab+bc+ac)$
Do $-1\leq a,b,c\leq 2$ nên:
$(a+1)(b+1)\geq 0$
$(b+1)(c+1)\geq 0$
$(c+1)(a+1)\geq 0$
Cộng 3 BĐT trên lại và thu gọn thì:
$ab+bc+ac+2(a+b+c)+3\geq 0$
$\Leftrightarrow ab+bc+ac\geq -3$
$\Rightarrow P=-2(ab+bc+ac)\leq (-2)(-3)=6$
Vậy $P_{\max}=6$. Giá trị này đạt tại $(a,b,c)=(2,-1,-1)$ và hoán vị.
Do \(-1\le a;b;c\le2\Rightarrow\left\{{}\begin{matrix}\left(a+1\right)\left(a-2\right)\le0\\\left(b+1\right)\left(b-2\right)\le0\\\left(c+1\right)\left(c-2\right)\le0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2\le a+2\\b^2\le b+2\\c^2\le c+2\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2\le a+b+c+6\)
\(\Rightarrow a^2+b^2+c^2\le6\)
Vậy \(P_{max}=6\) khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và các hoán vị