K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Để A là số tự nhiên thì :

\(5n-11⋮4n-13\)

Mà \(4n-13⋮4n-13\)

\(\Leftrightarrow\hept{\begin{cases}20n-44⋮4n-13\\5n-65⋮4n-13\end{cases}}\)

\(\Leftrightarrow21⋮4n-13\)

\(\Leftrightarrow4n-13\inƯ\left(21\right)\)

Suy ra :

+) 4n - 13 = 1 => n = 14/4 (loại)

+) 4n - 13 = 21 => n = 34/4 (loại)

+) 4n - 13 = 3 => n = 4 (thỏa mãn)

+) 4n - 13 = 7 => n = 5(thỏa mãn)

11 tháng 8 2016

a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\) 

Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)

\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)

\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)

Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.

b)  Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)

Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)

Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)

Từ  \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)

TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng : 

\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)

Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm

TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng : 

\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)

mà  n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1

Lập luận tương tự...

 

11 tháng 8 2016

a)Gọi UCLN(3n+1;5n+2) là d

Ta có:

[3(5n+2)]-[5(3n+1)] chia hết d

=>[15n+6]-[15n+5] chia hết d

=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau

=>Phân số tối giản 

b)Gọi d là UCLN(n3+2n;n4+3n2+1)

Ta có:

n3+2n chia hết d =>n(n3+2n) chia hết d

=>n4+2n2 chia hết d (1)

n4+3n2-(n4+2n2)=n2+1 chia hết d

=>(n2+1)2=n4+2n2+1 chia hết d (2)

Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d

=>1 chia hết d

=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản 

 

26 tháng 3 2020

Ok..giải cho

27 tháng 3 2020

ok..giải chưaleuleu

27 tháng 3 2020

1)\(2x^3+xy=7\)

\(\Leftrightarrow x\left(2x^2+y\right)=7\)

\(\Leftrightarrow y=\frac{7}{x}-2x^2\).Vì y nguyên nên \(7⋮x\Rightarrow x\in\left(+-1,+-7\right)\)

\(\Rightarrow y\in\left(5,-9,-97,-99\right)\)

2) x -2 1 3

\(\left|x+2\right|\) - + + +
\(\left|x-1\right|\) - - + +
\(\left|x-3\right|\) - - - +
PT -3x=12(1) -x=14(2) x=10(3) 3x=12(4)

-Với \(x< -2\) PT (1) có nghiệm x=-4 ( TMĐK)

-Với \(-2\le x< 1\) PT (2) có nghiệm x=-14( Ko TMĐK)

-Với \(1\le x< 3\) PT (3) có nghiệm x=10 ( Ko TMĐK)

-Với \(x\ge3\) PT (4) có nghiệm x=4( TMĐK)

Vậy S=(-4,4)