K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5

Ta có:

\(A=n^2+n+3\)

\(=\left(n^2+n\right)+3\)

\(=n\left(n+1\right)+3\)

Do \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2

\(3\) chia \(2\) dư 1

\(\Rightarrow n\left(n+1\right)+3\) chia 2 dư 1

Vậy số dư của phép chia A cho 2 là 1

19 tháng 7 2023

giúp mình với

 

19 tháng 7 2023

Để xác định số dư của phép chia số A cho 2, ta cần biết giá trị của A. Theo đề bài, A = m^2 + m + 3n, với m là một số nguyên và n là một số tự nhiên. Để xác định số dư của A khi chia cho 2, ta có thể xét các trường hợp: 1. Nếu m là số chẵn, thì m^2 cũng là số chẵn. Khi cộng thêm m và 3n, tổng này vẫn là số chẵn. Do đó, số dư của A khi chia cho 2 là 0. 2. Nếu m là số lẻ, thì m^2 cũng là số lẻ. Khi cộng thêm m và 3n, tổng này có thể là số chẵn hoặc số lẻ tùy thuộc vào giá trị của n. Do đó, số dư của A khi chia cho 2 có thể là 0 hoặc 1. Vậy, số dư của phép chia số A cho 2 có thể là 0 hoặc 1, tùy thuộc vào giá trị của m và n.

 

30 tháng 6 2016

Nhanh nhanh 1 tí đi!

26 tháng 6 2016

Số đó là 11311.

Lời giải chờ thứ 7 tuần sau.

2 tháng 7 2016

Vì a bằng số dư của phép chia N cho 2.

=> a = 1

=> abcd thuộc dạng 1bcd

=> e thuộc 0, 1, 2, 3, 4, 5

Vì d bằng số dư của phép chia N cho 5

=> de thuộc 00, 11, 22, 33, 44, 05 

Vì c bằng số dư của phép chia N cho 4

=> cde thuộc 000, 311, 222, 133, 044, 105

=. abcde có dạng là 1b000, 1b311, 1b222, 1b133, 1b044, 1b105

Vì b là số dư của phép chia N cho 3

=> a + b + c + d + e chia hết cho 3

=> Chọn được số 1b311, 1b044

Ta được các số là : 10311, 11311, 12311, 10044, 11044, 12044.

2 tháng 7 2016

a bằng số dư của phép chia N cho 2

=>a=1

=>abcd có dạng 1bcd

e thuộc số dư của phép N cho 6

=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5

=> d,e thuộc 00.11.22.33.44.05

c bằng số dư của phép chia N cho 4

=>c,d,e thuộc 000.311.222.133.044.105

=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105

vì b bằng số dư của phép chia N cho 3

=>a+c+d+e chia hết cho 3

=> chọn được số 1b311.1b044

Ta được các số là : 10311.11311.12311.10044.11044.12044

27 tháng 6 2016

jup minh vs

29 tháng 6 2016

/hoi-dap/question/57248.html

29 tháng 6 2016

/hoi-dap/question/58007.html

30 tháng 6 2016

a bằng số dư của phép chia N cho 2

=>a=1

=>abcd có dạng 1bcd

e thuộc số dư của phép N cho 6

=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5

=> d,e thuộc 00.11.22.33.44.05

c bằng số dư của phép chia N cho 4

=>c,d,e thuộc 000.311.222.133.044.105

=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105

vì b bằng số dư của phép chia N cho 3

=>a+c+d+e chia hết cho 3

=> chọn được số 1b311.1b044

Ta được các số là : 10311.11311.12311.10044.11044.12044

26 tháng 6 2016

Bài này ở mục toán vui hang tuần đó bạn.

A bằng số dư của phép chia N cho 2
=> a = 1
=> abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=> e thuộc 1.2.3.4.5 mà d thuộc phép chia N cho 5
=> d,e thộc 00.11.22.33.44.05
c bằng số dư phép chia N cho 4
=> cde thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3
=> Chọn được 1b311,1b004
Ta được các số là: 10311,11311,12311,10044,11044,12044.
mik làm zậy

A bằng số dư của phép chia N cho 2
=> a = 1
=> abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=> e thuộc 1.2.3.4.5 mà d thuộc phép chia N cho 5
=> d,e thộc 00.11.22.33.44.05
c bằng số dư phép chia N cho 4
=> cde thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3
=> Chọn được 1b311,1b004
Ta được các số là: 10311,11311,12311,10044,11044,12044.
Mình chọn số 10311

26 tháng 6 2016

Mình làm như thế này, đúng thì k còn sai thì sửa nha !!!
A bằng số dư của phép chia N cho 2
=> a = 1
=> abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=> e thuộc 1.2.3.4.5 mà d thuộc phép chia N cho 5
=> d,e thộc 00.11.22.33.44.05
c bằng số dư phép chia N cho 4
=> cde thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3
=> Chọn được 1b311,1b004
Ta được các số là: 10311,11311,12311,10044,11044,12044.