Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x^3-x\) có bậc 3 => R(x) có bậc tối đa là bậc 2
\(\Rightarrow\)Đặt \(R\left(x\right)=ax^2+bx+c\) và gọi Q(x) là phần thương số, ta được:
\(x^{81}+x^{49}+x^{25}+x^9+x+1=\left(x^3-x\right)Q\left(x\right)+ax^2+bx+c\) (1)
Cho \(x=0\Rightarrow\) (1)\(\Leftrightarrow1=c\)
Cho \(x=1\) thì \(\left(1\right)\Leftrightarrow6=a+b+1\Rightarrow a+b=5\) (2)
Cho \(x=-1\) thì \(\left(1\right)\Leftrightarrow-4=a-b+1\Rightarrow a-b=-5\) (2)
Từ (2) và (3) có hệ \(\left\{{}\begin{matrix}a+b=5\\a-b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
Vậy phần dư là \(R\left(x\right)=5x+1\)
Giả sử \(P\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(1\right)=a+b\\P\left(-1\right)=-a+b\end{matrix}\right.\)
Mà thay \(x=1\) và \(x=-1\) vào \(P\left(x\right)\) ta được \(\left\{{}\begin{matrix}P\left(1\right)=5\\P\left(-1\right)=-5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\-a+b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=5\\b=0\end{matrix}\right.\)
\(\Rightarrow R\left(x\right)=ax+b=5x\)
Dư trong phép chia cho $x^2-1$ có bậc cao nhất là bậc nhất.
Gọi thương của phép chia là $Q_{(x)}$ và dư là ax+b, với mọi x ta có: $ x+x^3+x^9+x^{27}+x^{81}=(x^2-1).Q_{(x)}+ax+b$
Với $x =1$ thì $5=a+b.$
Với $x=-1$ thì $-5=-a+b.$
Từ đó $a=5,b=0$ .Dư của phép chia là 5x.
a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)
\(\Rightarrow a-b+c-d=2\)
\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)
\(\Rightarrow a+b+c+d=34\)
\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)
\(P\left(2\right)=32-16a+8b-4c+2d-2010\)
\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)
\(=-12a-4.18+2.16+6b-1978\)
\(=-12a+6b-2018=-2084\)
\(\Rightarrow2a-b=11\)
\(P\left(3\right)=243-81a+27b-9c+3d-2010\)
\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)
\(=243-72a+24b-9.18+3.16-2010=-2385\)
\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)
Từ đó ta có \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)
Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)
Định lí Bezout: Số dư của phép chia đa thức cho nhị thức bằng giá trị của tại
Ta có số dư R(x) của phép chia P(x) cho x-1 là giá trị của P(x) tại x=1.
Có P(1)=\(1+1^3+1^9+1^{27}+1^{81}=5\)
Vậy số dư R(x) của phép chia P(x) cho x-1 là 5.
Lời giải:
Gọi $R(x)$ là đa thức dư khi chia $P(x)$ cho $(x-1)(x-2)(x-3)(x-4)$. Bậc của $R(x)$ phải nhỏ hơn bậc đa thức chia. Do đó đặt:
\(R(x)=ax^3+bx^2+cx+d\)
\(P(x)=Q(x)(x-1)(x-2)(x-3)(x-4)+ax^3+bx^2+cx+d\)
Trong đó $Q(x)$ là đa thức thương.
Theo định lý Bê-du về phép chia đa thức:
\(\left\{\begin{matrix} P(1)=a+b+c+d=-2019\\ P(2)=8a+4b+2c+d=-2036\\ P(3)=27a+9b+3c+d=-2013\\ P(4)=64a+16b+4c+d=-1902\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=8\\ b=-28\\ c=11\\ d=-2010\end{matrix}\right.\)
Vậy \(R(x)=8x^3-28x^2+11x-2010\)
b)
Từ phần a suy ra:
\(\left\{\begin{matrix} R(1)=P(1)=-2019\\ R(2)=P(2)=-2036\\ R(3)=P(3)=-2013\\ R(4)=P(4)=-1902\\ R(5)=8.5^3-28.5^2+11.5-2010=-1655\end{matrix}\right.\)
Gọi thương của phép chia \(P\left(x\right)\) cho \(x^3-x\) là \(Q\left(x\right)\)
Vì đa thức chia có bậc 3 nên đa thức dư có bậc không quá 2.
Ta có: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}=Q\left(x\right).x\left(x-1\right)\left(x+1\right)+ax^2+bx+c\)Với \(x=1\) ta có: \(a+b+c=6\) (1)
Với \(x=-1\) ta có: \(a-b+c=-4\) (2)
Với \(x=0\) ta có: \(c=1\)
Thế \(c=1\) vào (1) và (2) ta có:
\(\left\{{}\begin{matrix}a+b=5\\a-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
\(\Rightarrow R\left(x\right)=5x+1\)