K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y =  - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)

b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b =  - 2a.\)

Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b =  - 1.\)

Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b =  - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b =  - 2}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)

c) Parabol có đỉnh \(I(1;4)\) nên ta có:

\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a =  - 1}\\{b = 2}\end{array}} \right.\)

Vậy hàm số cần tìm là: \(y =  - {x^2} + 2x + 3.\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:

\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)

Vậy parabol là \(y = 2{x^2} + 6x + 4\)

b) Hoành độ đỉnh của parabol là \(x_I = \frac{{ - b}}{{2a}}\)

Suy ra \(x_I = \frac{{ - b}}{{2a}} =  - 3 \Leftrightarrow b = 6a\)     (1)

Thay tọa độ điểm I vào ta được:

\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b =  - 9\\ \Leftrightarrow 3a - b =  - 3\left( 2 \right)\end{array}\)

Từ (1) và (2) ta được hệ

\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b =  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a =  - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)

Vậy parabol là \(y = {x^2} + 6x + 4\).

5 tháng 6 2017

a)

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


10 tháng 4 2017

a)

y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2

y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3

Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\)  \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).

Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).

b)

I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).

y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)

Vậy: \(y=-x^2-4x-3\).

c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình đường tròn (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\) là: \({\left( {x + 4} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

b) Bán kính đường tròn là: \(R = PE = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}}  = \sqrt {40} \)

Phương trình đường tròn là: \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 40\).

c) Bán kính đường tròn là: \(R = \frac{{\left| {3.5 + 4.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 1} \right)^2} = 4\)

d) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = ID \Leftrightarrow I{A^2} = I{B^2} = I{D^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{D^2}\) nên: \(\left\{ \begin{array}{l}{\left( { - 3 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\\{\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 1\end{array} \right.\) 

=> \(I\left( {1; - 1} \right)\) và \(R = IA = \sqrt {{{\left( 4 \right)}^2} + {{\left( { - 3} \right)}^2}}  = 5\)

Vậy phương trình đường tròn đi qua 3 điểm A,B, D là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 25\)

a: Vì (P) đi qua A(1;0) nên c=0

Vậy: \(y=ax^2+bx\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=\dfrac{-3}{2}\\-\dfrac{b^2-4ac}{4a}=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2a}=\dfrac{3}{2}\\\dfrac{b^2}{4a}=\dfrac{25}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=3a\\9a^2-25a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{25}{9}\\b=\dfrac{25}{3}\end{matrix}\right.\)

4 tháng 12 2021

\(a,A\left(1;0\right)\in\left(P\right)\Leftrightarrow a+b+c=0\\ I\left(-\dfrac{3}{2};-\dfrac{25}{4}\right)\text{ là đỉnh}\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\\\dfrac{b}{2a}=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\b=3a\\\dfrac{9}{4}a-\dfrac{3}{2}b+c=-\dfrac{25}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=0\\b=3a\\-\dfrac{9}{4}a+c=-\dfrac{25}{4}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=3\\c=-4\end{matrix}\right.\)

Vậy \(\left(P\right):y=x^2+3x-4\)

b: Vì (P) đi qua A(0;-1) và B(2;-1) nên

\(\left\{{}\begin{matrix}c=-1\\4a+b-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\4a+b=0\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=0\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:

\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b =  - 1\)

Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm B(2; 4) nên:

\(a{.2^2} + 2b + 1 = 4 \Leftrightarrow 4a + 2b = 3\)

Từ 2 phương trình trên, ta có \(a = \frac{5}{2};b = \frac{{ - 7}}{2}\)

=> Hàm số cần tìm là \(y = \frac{5}{2}{x^2} - \frac{7}{2}x + 1\)

b) Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm A(1; 0) nên:

\(a{.1^2} + b.1 + 1 = 0 \Leftrightarrow a + b =  - 1\)

Đồ thị hàm số  \(y = a{x^2} + bx + 1\) có trục đối xứng x=1

\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow  - b = 2a \Leftrightarrow 2a + b = 0\)

Từ 2 phương trình trên, ta có \(a = 1;b =  - 2\)

=> Hàm số cần tìm là \(y = {x^2} - 2x + 1\)

c) Đồ thị hàm số  \(y = a{x^2} + bx + 1\) có đỉnh \(I(1;2)\) nên:

\(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow  - b = 2a \Leftrightarrow 2a + b = 0\)

\(a{.1^2} + b.1 + 1 = 2 \Leftrightarrow a + b = 1\)

Từ 2 phương trình trên, ta có \(a =  - 1;b = 2\)

=> Hàm số cần tìm là \(y =  - {x^2} + 2x + 1\)

d)  Đồ thị hàm số  \(y = a{x^2} + bx + 1\) đi qua điểm C(-1; 1) nên:

\(a.{( - 1)^2} + b.( - 1) + 1 = 1 \Leftrightarrow a - b = 0 \Leftrightarrow a = b\)

Đồ thị hàm số  \(y = a{x^2} + bx + 1\) có tung độ đỉnh là -0,25 nên:

\(\frac{{ - \Delta }}{{4a}} =  - 0,25 \Leftrightarrow  - \frac{{{b^2} - 4.a.1}}{{4a}} =  - 0,25 \Leftrightarrow {b^2} - 4a = a \Leftrightarrow {b^2} = 5a\)

Thay a=b ta có:

\({b^2} = 5b \Leftrightarrow b=0\) hoặc \(b=5\)

Vì \(a \ne 0\) nên \(a=b=5\)

=> Hàm số cần tìm là \(y = 5{x^2} + 5x + 1\)