Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm có 2 tiệm cận đứng khi và chỉ khi phương trình: \(x^2+2\left(m-1\right)x+m^2-2=0\) có 2 nghiệm phân biệt khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}1+2\left(m-1\right)+m^2-2\ne0\\\Delta'=\left(m-1\right)^2-\left(m^2-2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m-3\ne0\\-2m+3>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne\left\{1;-3\right\}\end{matrix}\right.\)
Hàm không có tiệm cận đứng khi: \(x^2-\left(2m+3\right)x+2\left(m-1\right)=0\) có nghiệm \(x=2\)
\(\Rightarrow4-2\left(2m+3\right)+2\left(m-1\right)=0\)
\(\Rightarrow m=-2\)
Lời giải:
Theo đề thì cần tìm $m$ để đths đã cho cho TCĐ $x=2$
Điều này xảy ra khi mà $2x+2m=0$ tại $x=2$
$\Leftrightarrow m=-x=-2$
Đáp án B.
Đề bài sai, do pt \(x^2+3x+4=0\) vô nghiệm nên đồ thị hàm số không có TCĐ nào với mọi m
Chọn D
Đồ thị hàm số có đúng hai tiệm cận đứng
có 2 nghiệm phân biệt khác 1.
Ta có:
⇒ là tiệm cận đứng của đồ thị hàm số.
+ Tiệm cận đứng đi qua A 1 ; 2
⇔
⇔ m = 2.
Vậy với m = 2 thì tiệm cận đứng của đồ thị đi qua A - 1 , 2
1.
Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)
Khi đó:
\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng
Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)
Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)
2.
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ
\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận
Vậy ĐTHS có 2 tiệm cận
3.
Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m=\left\{5;-5\right\}\)
Đề bài sai hoặc đáp án sai
Chọn D
Đồ thị hàm số
có đúng hai tiệm cận đứng
⇔ phương trình có hai nghiệm phân biệt