K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Ta có 

để x 4 + ax + b chia hết cho x 2 – 4 thì ax + b + 16 = 0

ó a x = 0 b + 16 = 0 ó  a = 0 b = - 16

Đáp án cần chọn là: A

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

2 tháng 10 2021

\(a,4x^3+ax+b⋮x-2\\ \Leftrightarrow4x^3+ax+b=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+2a+b=0\Leftrightarrow2a+b=-32\left(1\right)\)

\(4x^3+ax+b⋮x+1\\ \Leftrightarrow4x^3+ax+b=\left(x+1\right)\cdot b\left(x\right)\)

Thay \(x=-1\Leftrightarrow-4-a+b=0\Leftrightarrow a-b=-4\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\) ta có hệ \(\left\{{}\begin{matrix}2a+b=-32\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-36\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)

 

8 tháng 10 2015

Đây là phương pháp đồng nhất hạng tử (cách này hơi khó hiểu vì dành cho lớp chuyên toán hoặc đội tuyển)

sau khi lấy x4+ax+b chia cho x2-1 ta được x2+1 dư ax+b+1

ta có x4+ax+b = (x2-1)(x2+cx+d)

=>x4+ax+b=x4+cx3+dx2-x2-cx-d

Tương đương bậc của 2 bên ( ko cần ghi bậc chỉ cần ghi hệ số)

x=x=> 0

0x=cx3 => c=0

0x2=(d-1)x2  => d-1 = 0 ( lấy x2 chung)

ax=-cx => a=-c

b=-d

Từ những điều trên ta kết luận 

a=0 (a=-c mà c=0)

b=1 (b=-d mà d=1)

 

 

25 tháng 8 2021

Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1

Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )

=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )

<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d

<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d

Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)

Vậy a = b = 1

25 tháng 8 2021

x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1). 
để x^4+ax^2+1 chia hết cho x^2+x+1 
thì số dư =0 
<=> (a-1)(x-1) =0 
<=> a=1

15 tháng 10 2020

Ta có :

Nghiệm của x2 + x - 2 là x = 1 và x = -2

=> Để x3 + ax + b chia hết cho x2 + x - 2

thì x3 + ax + b cũng nhận x = 1 và x = -2 làm nghiệm

+) Với x = 1

Thế vào x3 + ax + b ta được 

13 + a.1 + b = 0

=> 1 + a + b = 0

=> a + b = -1 (1)

+) Với x = -2 

Thế vào x3 + ax + b ta được

(-2)3 + a.(-2) + b = 0

<=> -8 - 2a + b = 0

<=> -8 = 2a - b (2)

Từ (1) và (2) => \(\hept{\begin{cases}a+b=-1\\2a-b=-8\end{cases}}\)

Lấy (1) cộng (2) theo vế => 3a = -9 => a = -3

Thế a = -3 vào (1) => -3 + b = -1 => b = 2

Vậy \(\hept{\begin{cases}a=-3\\b=2\end{cases}}\)

15 tháng 10 2020

Hoặc là dùng cách này

Ta có : x3 + ax + b có bậc 3

           x2 + x - 2 có bậc là 2

=> Thương là một đa thức bậc 1

Giả sử đa thức thương đó là x + c + d

=> x3 + ax + b chia hết cho x2 + x - 2

khi và chỉ khi  x3 + ax + b = ( x2 + x - 2 )( x + c + d )

                <=> x3 + ax + b = x3 + cx2 + dx2 + x2 + cx + dx - 2x - 2c - 2d

                <=> x3 + ax + b = x3 + x2( c + d + 1 ) + x( c + d - 2 ) - ( 2c + 2d )

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}c+d+1=0\\c+d-2=a\\2c+2d=-b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=2\end{cases}}\)

Vậy a = -3 ; b = 2