Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=ax2+bx+c
Ta có:f(0)=a.02+b.0+c=c
Mà f(0)=-2=>c=-2
Ta có: f(1)=a.12+b.1+c=a+b+c
Mà f(1)=3=>a+b+c=3
=>a+b=3-c=3-(-2)=5
=>a=5-b
Ta có: f(-2)=a.(-2)2+b.(-2)+c=4a-2b+c
Mà f(-2)=1=>4a-2b+c=1
=>4a-2b=1-c=1-(-2)=1+2=3
=>2.(2a-b)=3
=>2a-b=3/2
=>2.(5-b)-b=3/2
=>10-2b-b=3/2
=>2b-b=10-3/2=>b=17/2
=>a=5-17/2=-7/2
Vậy.............................
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
Theo de ta co:
f(0) = a.02+b.0+c = c =1
f(1)=a.12+b.1+c = a+b+1 = 2 => a+b = 1
f(2)=a.22+b.2+c = 4a+2b+1=2(2a+b)+1 = 4 => 2(2a+b) = 3 => 2a+b = 3/2 => b = 3/2 - 2a
Thay b=3/2 - 2a vao bieu thuc: a+b=1 ta duoc:
a+3/2-2a = 1
3/2-a= 1
=> a = 3/2 - 1 = 1/2
Suy ra: b = 3/2 - 2.1/2 = 1/2
Vay: a = 1/2 ; b=1/2 ; c=1
\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)
\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)
Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)
\(f\left(0\right)=5=>c=5;f\left(2\right)=4.a+2.b+5=0;f\left(5\right)=25a+5b+5=0\Leftrightarrow5a+b+1=0\)
\(\hept{\begin{cases}4a+2b+5=0\\5a+b+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\10a+2b+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\6a-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-\frac{7}{2}\\a=\frac{1}{2}\end{cases}}\)
\(f\left(x\right)=\frac{1}{2}x^2-\frac{7}{2}x+5\)
b)
\(f\left(-1\right)=\frac{1}{2}+\frac{7}{2}+5=9=>P\left(-1;3\right)kothuocHS\)
\(f\left(\frac{1}{2}\right)=\frac{1}{2}.\frac{1}{4}-\frac{7}{2}.\frac{1}{2}+5=\frac{\left(1-14+5.8\right)}{8}=\frac{27}{8}=>Qkothuoc\)
c)
\(\frac{1}{2}x^2-\frac{7}{2}x+5=-3\Rightarrow\frac{1}{2}x^2-\frac{7}{2}x+8=0\)
\(x^2-7x+16=0\Leftrightarrow\left(x^2-2.\frac{7}{2}x+\frac{49}{4}\right)+\frac{15}{4}\)vo nghiem
a) \(a:b:c=\left(-1\right):3:\left(-4\right)\Rightarrow-a=\dfrac{b}{3}=-\dfrac{c}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=4a\end{matrix}\right.\)
\(\dfrac{1}{2}f\left(2\right)=-2\)
\(\Rightarrow\dfrac{1}{2}.\left(4a+2b+c\right)=-2\)
\(\Rightarrow2a+b+\dfrac{c}{2}=-2\)
\(\Rightarrow2a-3a+\dfrac{4a}{2}=-2\)
\(\Rightarrow a=-2\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a=-3.\left(-2\right)=6\\c=4a=4.\left(-2\right)=-8\end{matrix}\right.\).
b) \(f\left(x\right)=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow-2x^2+6x-8=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow h\left(x\right)=-13x^2-10\)
\(\Rightarrow h\left(x\right)=-\left(13x^2+10\right)\le-\left(13+10\right)=-23\)
\(h\left(x\right)=-23\Leftrightarrow x=0\)
-Vậy \(h\left(x\right)_{max}=-23\)
\(\text{Theo bài ra ta có:}\hept{\begin{cases}f\left(1\right)=a+b+c=4\\f\left(2\right)=4a+2b+c=7\\f\left(-3\right)=9a-3b+c=32\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=4\\3a+b=3\\8a-4b=28\end{cases}\Leftrightarrow\hept{\begin{cases}a+b+c=4\\3a+b=3\\2a-b=7\end{cases}\Leftrightarrow}}\)
\(\hept{\begin{cases}a+b+c=4\\3a+b=3\\5a=10\end{cases}\Leftrightarrow\hept{\begin{cases}a+b+c=4\\6+b=3\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=-3\\c=5\end{cases}}}\)
\(\Rightarrow y=2x^2-3x+5\)