K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 9 2021

\(x=\sqrt{7}-5\Leftrightarrow x+5=\sqrt{7}\)

\(\Rightarrow\left(x+5\right)^2=7\Leftrightarrow x^2+10x+25=7\)

\(\Leftrightarrow x^2+10x+18=0\)

Vậy đa thức cần tìm có dạng \(f\left(x\right)=a\left(x^2+10x+18\right)\)với \(a\ne0\).

16 tháng 9 2021

Bạn ơi chỗ cuối cùng tại sao lại suy ra được đáp án là như vậy ạ

25 tháng 8 2020

a) 

\(\sqrt{18-6\sqrt{6}+3}\)        

\(\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)       

\(\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)       

\(|3\sqrt{2}-\sqrt{3}|\)   

\(3\sqrt{2}-\sqrt{3}\)   

b) 

\(\sqrt{\frac{7}{2}-\sqrt{7}+\frac{1}{2}}\)   

\(\sqrt{\left(\sqrt{\frac{7}{2}}\right)^2+2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)    

\(\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)^2}\)     

\(|\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}|\) 

\(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\)        

c) 

\(\sqrt{3+2\sqrt{3}+1}\)  

\(\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)    

\(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\) 

d) 

Đặt t = \(\sqrt{x-1}\left(ĐK:t\ge0\right)\)   

\(\sqrt{t^2+1-2t}\)       

\(\sqrt{\left(t+1\right)^2}\)   

\(=t+1\)      

\(\sqrt{x-1}+1\)                     

25 tháng 8 2020

\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2\sqrt{9}\sqrt{6}+3}=\sqrt{\left(\sqrt{18}\right)^2-2\sqrt{18}\sqrt{3}+\left(\sqrt{3}\right)^2}\)

                                \(=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}=\sqrt{18}+\sqrt{3}=\sqrt{3}+3\sqrt{2}\)

\(\sqrt{4-\sqrt{7}}=\frac{\sqrt{2}\sqrt{4-\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7}+1}}{\sqrt{2}}\)

                           \(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-1}{\sqrt{2}}=\frac{\sqrt{14}-\sqrt{2}}{2}\)

\(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Với \(x\ge1\)thì \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)

                                                                  \(=\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}\sqrt{1}+\left(\sqrt{1}\right)^2}\)

                                                                  \(=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1\)

T đã tốn mấy phút cuộc đời viết lời giải cho bạn r, tiếc j mấy giây mà bấm k cho t ik =))

3 tháng 10 2021

Bạn xem lại đề sao lại là : 2mx + 2mx ko hợp lí lắm 

4 tháng 10 2021

Đề là x^3 + 2mx^2 + 2mx + 1 = 0 nha bạn mình viết sai

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:

Cho $x=3$ thì:

$P(2)+2P(2)=2^2\Rightarrow 3P(2)=4\Rightarrow P(2)=\frac{4}{3}$

$\Rightarrow P(x-1)=x^2-2P(2)=x^2-2.\frac{4}{3}=x^2-\frac{8}{3}$

$\Rightarrow P(x)=(x+1)^2-\frac{8}{3}$

Thay $x=\sqrt{2013}-1$ ta có:

$P(\sqrt{2013}-1)=(\sqrt{2013}-1+1)^2-\frac{8}{3}=2013-\frac{8}{3}=\frac{6031}{3}$