Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
Phân tích đa thức x2+ x-6 = (x-2)(x+3)
Gọi thương của phép chia f(x) cho đa thức trên là Q(x)
Ta có f(2)= 8+ 2a+b=0
Suy ra 2a+b=-8
lại có f(-3)= -27+ 3a+b=0
Suy ra 3a+b=27
đến đây ta dùng máy tính giải hệ ta được a=35;b=-78
Vì \(x^{2017}-ax^{2016}+ax-1⋮\left(x-1\right)^2\Rightarrow x^{2017}-ax^{2016}+ax-1=\left(x-1\right)^2.Q\left(x\right)\text{đúng}\forall x\)
Thay x = 1 vào đẳng thức trên, ta có:
1 - a + a - 1 = 0 (đúng) => Có vô số số hữu tỉ a thoả mãn để bài
Đa thức x - 1 có nghiệm \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy 1 là nghiệm của đa thức x - 1
Để đa thức x1995 - ax1994 + ax - 1 chia hết cho x - 1 thì 1 cũng là nghiệm của đa thức x1995 - ax1994 + ax - 1
Khi đó: \(1-a+a-1=0\Leftrightarrow0=0\)(đúng)
Vậy với mọi a thì đa thức x1995 - ax1994 + ax - 1 chia hết cho x - 1
do đa thức bị chia có bậc 3, đa thức chia có bậc 2 nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là\(x^3:x^2=x\)
Gọi thương là \(x+c\), ta có:
\(x^3+ax+b=\left(x^2+x-2\right)\left(x+c\right)\) \(^1\)
=>\(x^3+ax+b=x^3+\left(c+1\right).x^2+\left(c-2\right)x-2c\) \(^2\)
từ 1 và 2, suy ra:
\(\left\{{}\begin{matrix}c+1=0\\c-2=a\\-2c=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-3\\b=2\end{matrix}\right.\)
Vậy với a= -3 ; b=2 thì \(x^3+ax+b\) chia hết cho \(x^2+x-2\), thương là x-1
Bài 1 :
x2 - x - 2 = x2 - 2x + x - 2
= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )
Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :
x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q
Vì đẳng thức trên đúng với mọi x, do đó :
+) đặt x = 2 ta có :
23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q
8 + 2a + b = 0
2a + b = -8
b = -8 - 2a (1)
+) đặt x = -1 ta có :
(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q
-1 - a + b = 0
-a + b = 1 (2)
Thay (1) vào (2) ta có :
-a - 8 - 2a = 1
<=> -3a = 9
<=> a = -3
=> b = 1 + (-3) = -2
Vậy a = -3; b = -2
Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$
$x^2+x-2=(x-1)(x+2)$
Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$
$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức)
$\Leftrightarrow a+b-1=-8a+4b+32=0$
$\Leftrightarrow a=3; b=-2$