Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2*(a+2)-5x-2
B=8x2-x*(2b+7)+(c-1)
Để 2 đa thức trên đồng nhất thì
- a=8
- 2b+7=5
- c-1=-2
Hay
- a=8
- b=-1
- c=-1
Vậy với a=8;b=-1;c=-1 thì 2 đa thức đã cho đồng nhất
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
A=x2*(a+2)-5x-2
B=8x2-x*(2b+7)+(c-1)
Đểt thì 2 đa thức đã cho đồng nhấ
- a+2=8
- 2b+7=5
- c-1=-2
Hay
- a=6
- b=-1
- c=-1
Vậy với a=6;b=-1;c=-1 thì 2 đa thức đã cho đồng nhất
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
\(A=ax^2-9x+6x^2-\left(4x^2-3x\right)=ax^2-9x+6x^2-4x^2+3x=\left(a+2\right)x^2-6x\)
\(B=2x^2-3bx+c-1\)
Hai đa thức A và B đồng nhất khi và chỉ khi
\(\left\{{}\begin{matrix}a+2=2\\-6=-3b\\c-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\b=2\\c=1\end{matrix}\right.\)
Vậy với \(a=0;b=2;c=1\) thì 2 đa thức A và B đồng nhất