Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)\left(x-3\right)^2=\left(x-1\right)\left(x+1\right)\left(x-3\right)^2\)
a) Ta có: \(x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
b) Ta có: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)
c) Ta có: \(x^5+x+1\)
\(=x^5+x^2-x^2+x-1\)
\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
\(a,=\left(m-y\right)\left(m+y\right)+a\left(m+y\right)=\left(m+y\right)\left(m-y+a\right)\\ b,=3x\left(y-1\right)+\left(y-1\right)\left(y+1\right)=\left(y-1\right)\left(3x+y+1\right)\)
a: \(=\left(m-y\right)\left(m+y\right)+a\left(m+y\right)\)
\(=\left(m+y\right)\left(m-y+a\right)\)
Ta có: \(\dfrac{x}{2\cdot3}+\dfrac{x}{3\cdot4}+...+\dfrac{x}{99\cdot100}=-1\)
\(\Leftrightarrow x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=-1\)
\(\Leftrightarrow x\cdot\dfrac{49}{100}=-1\)
hay \(x=-\dfrac{100}{49}\)
$\dfrac{x}{2.3}+\dfrac{x}{3.4}+...+\dfrac{x}{99.100}=1$
`<=>x/2 - x/3 +x/3-x/4+...+x/(99)-x/(100)=1`
`<=>x/2-x/(100)=1`
`<=>(50x)/(100)-x/(100)=(100)/(100)`
`<=>50x-x=100`
`<=>49x=100`
`<=>x=(100)/(49)`
Vậy `x=(100)/(49)`
a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)
b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)
\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)
\(\dfrac{360}{x}-\dfrac{400}{x+1}=1\) (ĐK: \(x\ne0,x\ne-1\))
\(\Leftrightarrow\dfrac{360\left(x+1\right)}{x\left(x+1\right)}-\dfrac{400x}{x\left(x+1\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow360\left(x+1\right)-400x=x\left(x+1\right)\)
\(\Leftrightarrow360x+360-400x=x^2+x\)
\(\Leftrightarrow-40x+360=x^2+x\)
\(\Leftrightarrow x^2+40x+x-360=0\)
\(\Leftrightarrow x^2+41x-360=0\)
\(\Rightarrow\Delta=41^2-4\cdot1\cdot\left(-360\right)=3121>0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-41+\sqrt{3121}}{2\cdot1}\approx7\left(tm\right)\\x_2=\dfrac{-41-\sqrt{3121}}{2\cdot1}\approx-48\left(tm\right)\end{matrix}\right.\)
\(\dfrac{360}{x}-\dfrac{400}{x+1}=1\)
Điều kiện: \(x\ne0;x\ne-1\)
PT \(\Leftrightarrow\dfrac{360\left(x+1\right)-400x}{x\left(x+1\right)}=1\)
\(\Rightarrow-40x+360=x\left(x+1\right)\)
\(\Leftrightarrow-40x+360=x^2+x\)
\(\Leftrightarrow x^2+41x-360=0\)
\(\Leftrightarrow x^2+2.\dfrac{41}{2}.x+\dfrac{1681}{4}=\dfrac{3121}{4}\)
\(\Leftrightarrow\left(x+\dfrac{41}{2}\right)^2=\left(\dfrac{\sqrt{3121}}{2}\right)^2\)
\(\Leftrightarrow x+\dfrac{41}{2}=\dfrac{\sqrt{3121}}{2}\) hoặc \(x+\dfrac{41}{2}=-\dfrac{\sqrt{3121}}{2}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3121}}{2}-\dfrac{41}{2}\) hoặc \(x=-\dfrac{\sqrt{3121}}{2}-\dfrac{41}{2}\)
Vậy...
a. 9x2 - 6x - 3 = 0
<=> 3(3x2 - 2x - 1) = 0
<=> 3(3x2 - 3x + x - 1) = 0
<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)
<=> 3(3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
b. (2x + 1)2 - 4(x + 2)2 = 9
<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)
<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9
<=> -3(4x + 5) = 9
<=> 4x + 5 = -3
<=> 5 + 3 = -4x
<=> -4x = 8
<=> -x = 2
<=> x = -2
a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2-4=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)
c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)