Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)
Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)
b, Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)
Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)
đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=k\Rightarrow x=3k;y=4k;z=6k\)
thay x=3k;y=4k;z=6k vào x.y.z=576 ta được:
3k.4k.6k=576
72k3=576
k3=576:72
k3=8
k3=23
=>k=2
=>x=3.2=6
y=4.2=8
z=6.2=12
Ta co :\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\) va x.y.z = 576
Dat :\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=k\)
x=3k
y=4k
z=6k
x.y.z=72k3
576 =72k3
k3 = 8
=>k =2
Voi : k=2 \(\Rightarrow x=2.3=6;y=2.4=8;z=2.6=12\)
\(\)
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+ \frac{z}{xz+z+1}\)
\(=\frac{x}{xyz+xy+x}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{1}{yz+y+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{y+1}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{xyz+y}{xyz+yz+y}+\frac{z}{xz+z+1 }\)
\(=\frac{xz+1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
#Carrot
\(\frac{x}{4}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{6}\)
Suy ra \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=t\Leftrightarrow\hept{\begin{cases}x=8t\\y=6t\\z=11t\end{cases}}\).
\(xyz=8t.6t.11t=528t^3=-528\Leftrightarrow t=-1\)
\(\Rightarrow\hept{\begin{cases}x=-8\\y=-6\\z=-11\end{cases}}\).