Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: A= 3x2 - 15x = 0
A = 3x(x-5) = 0
=> x(x-5) = 0
=> x = 0 hoặc x-5 = 0
=> x= 0 hoặc x= 5
B = -2x2 - 1 = 0
=> -2x2 = 1
=> x2 = \(\dfrac{-1}{2}\) (vô lí )
Vậy B vô nghiệm
C = 2x3 + 18x = 0
=> C= 2x(x2 + 9) = 0
=> x.(x2 + 9) = 0
=> x= 0 hoặc x2 + 9 = 0
=> x= 0 hoặc x2 = -9 (vô lí)
Vậy nghiệm của đa thức C là x = 0
A(x) = 3x2 - 15x = 3x(x - 5)
Đặt A(x) = 0, ta có:
A(x) = 3x(x - 5) = 0
\(\Rightarrow\left[{}\begin{matrix}3x=0\\x-5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy nghiệm của A(x) là x = 0 hoặc x = 5
_________________________________________________________
Đặt B(x) = 0, ta có:
B(x) = -2x2 - 1 = 0
=> -2x2 = 1
\(\Rightarrow x^2=-\dfrac{1}{2}\) (1)
Mà \(x^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow x^2\ne-\dfrac{1}{2}\Rightarrow x\in\varnothing\)
Vậy B(x) vô nghiệm
_________________________________________________________
C(x) = 2x3 + 18x = 2x(x2 + 9)
Đặt C(x) = 0, ta có:
C(x) = 2x(x2 + 9) = 0
=> Ta có các trường hợp:
+/ 2x = 0 => x = 0
+/ x2 + 9 = 0 => x2 = -9
Mà \(x^2\ge0\) nên không tồn tại trường hợp x2 + 9 = 0
Vậy nghiệm của C(x) là 0
Ta có x=17 => 18 = 17 + 1
Ta có :
A(x) = x^6 - 18x^5+ 18x^4-18x^3+18x^2-18x + 2
= 17^6-(17+1)*17^5+(17+1)*17^4-(17+1)*17^3+(17+1)*17^2-(17+1)*17+2
= 17^6-17^6-17^5+17^5+17^4-17^4-17^3+17^3+17^2-17^2-17+2
= -17+2
=-15
k cho mình nhé
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
a: Theo đề, ta có: \(A+2x^4-3x^2y+y^4+3xz+z^2=y^4+z^2\)
hay \(A=-2x^4+3x^2y-3xz\)
b: Theo đề, ta có: \(A+3xy^2+3xz^2-3xyz-8y^2z^2+10=10\)
hay \(A=-3xy^2-3xz^2+3xyz+8y^2z^2\)
a) \(\begin{array}{l}P(x) = {x^2}({x^2} + x + 1) - 3x(x - a) + \dfrac{1}{4} = {x^4} + {x^3} + {x^2} - 3{x^2} + 3ax + \dfrac{1}{4}\\ = {x^4} + {x^3} - 2{x^2} + 3ax + \dfrac{1}{4}\end{array}\).
b) Các hệ số có trong đa thức P(x) là: 1; 1; – 2; 3a; \(\dfrac{1}{4}\).
Tổng các hệ số bằng \(\dfrac{5}{2}\)hay:
\(\begin{array}{l}1 + 1 - 2 + 3a + \dfrac{1}{4} = \dfrac{5}{2}\\ \to 3a = \dfrac{9}{4}\\ \to a = \dfrac{3}{4}\end{array}\)
Vậy \(a = \dfrac{3}{4}\).
a) Các đơn thức có trong đa thức P(x) là: \(4{x^2};3x\).
Chia từng đơn thức (của biến x) có trong đa thức P(x) cho đơn thức Q(x) được kết quả lần lượt là:
\(4{x^2}:2x = (4:2).({x^2}:x) = 2x\).
\(3x:2x = (3:2).(x:x) = \dfrac{3}{2}\).
b) Cộng các thương vừa tìm được \( = 2x + \dfrac{3}{2}\).
Để chia đa thức x^4 - 3x^2 - 18x + a + 2 cho đa thức x - 3, ta sử dụng phép chia đa thức thông thường. Bước 1: Sắp xếp các hạng tử theo bậc giảm dần của x: x^4 - 3x^2 - 18x + a + 2 Bước 2: Lấy hạng tử có bậc cao nhất của đa thức chia (x^4) chia cho hạng tử có bậc cao nhất của đa thức chia (x): x^4 / (x) = x^3 Bước 3: Nhân kết quả ở bước 2 (x^3) với đa thức chia (x - 3): (x - 3) * x^3 = x^4 - 3x^3 Bước 4: Trừ kết quả ở bước 3 (x^4 - 3x^3) từ đa thức ban đầu (x^4 - 3x^2 - 18x + a + 2): (x^4 - 3x^2 - 18x + a + 2) - (x^4 - 3x^3) = -3x^2 - 18x + a + 2 + 3x^3 Bước 5: Lấy hạng tử có bậc cao nhất của đa thức chia (x^3) chia cho hạng tử có bậc cao nhất của đa thức chia (x): 3x^3 / (x) = 3x^2 Bước 6: Nhân kết quả ở bước 5 (3x^2) với đa thức chia (x - 3): (x - 3) * 3x^2 = 3x^3 - 9x^2 Bước 7: Trừ kết quả ở bước 6 (3x^3 - 9x^2) từ kết quả ở bước 4 (-3x^2 - 18x + a + 2 + 3x^3): (-3x^2 - 18x + a + 2 + 3x^3) - (3x^3 - 9x^2) = -12x^2 - 18x + a + 2 Bước 8: Lấy hạng tử có bậc cao nhất của đa thức chia (x^2) chia cho hạng tử có bậc cao nhất của đa thức chia (x): -12x^2 / (x) = -12x Bước 9: Nhân kết quả ở bước 8 (-12x) với đa thức chia (x - 3): (x - 3) * (-12x) = -12x^2 + 36x Bước 10: Trừ kết quả ở bước 9 (-12x^2 + 36x) từ kết quả ở bước 7 (-12x^2 - 18x + a + 2): (-12x^2 - 18x + a + 2) - (-12x^2 + 36x) = -54x + a + 2 Bước 11: Lấy hạng tử có bậc cao nhất của đa thức chia (-54x) chia cho hạng tử có bậc cao nhất của đa thức chia (x): -54x / (x) = -54 Bước 12: Nhân kết quả ở bước 11 (-54) với đa thức chia (x - 3): (x - 3) * (-54) = -54x + 162 Bước 13: Trừ kết quả ở bước 12 (-54x + 162) từ kết quả ở bước 10 (-54x + a + 2): (-54x + a + 2) - (-54x + 162) = a - 160 Kết quả cuối cùng là a - 160.