K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2022

x3 + (x + 1)3 + (x + 2)3 

= x3 + (x + 1)3 + (x + 2)3 - 3x(x + 1)(x + 2) + 3x(x + 1)(x + 2)

\(\dfrac{\left(x+x+1+x+2\right)\left[\left(x-x-1\right)^2+\left(x-x-2\right)^2+\left(x+1-x-2\right)^2\right]}{2}+3x\left(x+1\right)\left(x+2\right)\)

\(=9\left(x+1\right)+3x\left(x+1\right)\left(x+2\right)⋮9\) (vì x(x + 1)(x + 2) tích 3 số nguyên liên tiếp) 

15 tháng 8 2016
c/ sai vì -4<3 nhưng (-4)^2 = 16>9
6 tháng 3 2016

4 số liên tiếp nên chia hết cho 2.3.4=24

giá trị 9luôn có các chữ số tận cùng là 9;1 nên 2 số 9x+1 hoặc 9x+4 sẽ cố số chia hết cho 5 

nên nó chia hết cho 24.5=120 

17 tháng 1 2016

1)can(2)*(can(2)+1-can(3))

2)-1/(canbậc3của2-1)

3)120

4)1

5)3

6)60

7)chưa làm

8)72

9)47

21 tháng 10 2020

Có p; q ; p -q ; p + q là các số nguyên tố

=> p > q

Th1: q > 2 

=> p; q là số chẵn 

=> p - q ; p + q là các số chẵn => loại 

Th2: q = 2 

Ta tìm p để p; p - 2 ; p + 2 là các số nguyên tố

+) Nếu p - 2 = 3 => p = 5 => p + 2 = 7 là các số nguyên tố => p = 5 thỏa mãn

+) Nếu p - 2 = 3k + 1 => p = 3 k + 3 không là số nguyên tố=> loại 

+) Nếu p - 2 = 3k + 2 => p = 3k + 4 => p + 2 = 3k + 6 không là số nguyên tố => loại 

Vậy p = 5; q = 2

29 tháng 6 2017

bn đặt tính chia đa thức, tìm ra số dư rồi cho số dư = 0 là tìm được m

29 tháng 6 2017

mk dùng Bezout nha

a) Để x2-2x2+x+m chia hết cho x-2 thì x2-2x2+x+m = 0 tại x=2

=> 22-2.22+2+m = 0

=> m = 2

b) Để x3-3x+m+1 chia hết cho 2x-3 thì x3-3x+m+1 = 0 tại x = 3/2

Tìm đc m=1/8

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

NV
3 tháng 1 2024

\(A\left(x\right)\) đồng thời chia hết \(x+1;x-3\)

\(\Rightarrow A\left(x\right)\) nhận \(x=-1;x=3\) là 2 nghiệm

Thay vào ta được: \(\left\{{}\begin{matrix}\left(m+3\right).\left(-1\right)^2-\left(2n-1\right).\left(-1\right)-1=0\\\left(m+3\right).3^2-\left(2n-1\right).3-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2n=-1\\9m-6n=-29\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m+6n=-3\\9m-6n=-29\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12m=-32\\9m-6n=-29\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-\dfrac{8}{3}\\n=\dfrac{5}{6}\end{matrix}\right.\)

13 tháng 10 2020

Ta có: \(x^3;y^3\equiv1;-1\left(mod9\right)\Rightarrow x^6\equiv y^6\equiv1\left(mod9\right)\Rightarrow x^6-y^6⋮9\)