Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đê: Q=mx^3+(m-2)x^2-(3n-5)x-4n
\(\dfrac{Q\left(x\right)}{x+1}\)
\(=\dfrac{mx^3+mx^2-2x^2-2x+\left(2-3n+5\right)x-4n}{x+1}\)
\(=mx^2-2x+\dfrac{\left(7-3n\right)x+7-3n-7-n}{x+1}\)
\(=mx^2-2x+7-3n+\dfrac{-n-7}{x+1}\)
Q(x) chia hết cho x+1
=>-n-7=0
=>n=-7
=>Q(x)=mx^3+(m-2)x^2+26x-28
\(\dfrac{Q\left(x\right)}{x-3}=\dfrac{mx^3-3mx^2+\left(4m-2\right)x^2-3\left(4m-2\right)x+\left(12m-6+26\right)x-28}{x-3}\)
\(=mx^2+\left(4m-2\right)x+\dfrac{\left(12m+20\right)x-28}{x-3}\)
\(=mx^2+\left(4m-2\right)x+\dfrac{\left(12m+20\right)x-3\left(12m+20\right)+3\left(12m+20\right)-28}{x-3}\)
\(=mx^2+\left(4m-2\right)x+12m+20+\dfrac{36m+32}{x-3}\)
Q(x) chia hết cho x-3
=>36m+32=0
=>m=-8/9
+ P(x) chia hết cho x + 1
⇔ P(-1) = 0
⇔ m . ( - 1 ) 3 + ( m – 2 ) ( - 1 ) 2 – ( 3 n – 5 ) . ( - 1 ) – 4 n = 0
⇔ -m + m – 2 + 3n – 5 – 4n = 0
⇔ -n – 7 = 0
⇔ n = -7 (1)
+ P(x) chia hết cho x – 3
⇔ P(3) = 0
⇔ m.33 + (m – 2).32 – (3n – 5).3 – 4n = 0
⇔ 27m + 9m – 18 – 9n + 15 – 4n = 0
⇔ 36m – 13n = 3 (2)
Từ (1) và (2) ta có hệ phương trình :
+ P(x) chia hết cho x + 1
⇔ P(-1) = 0
⇔ m.(-1)3 + (m – 2)(-1)2 – (3n – 5).(-1) – 4n = 0
⇔ -m + m – 2 + 3n – 5 – 4n = 0
⇔ -n – 7 = 0
⇔ n = -7 (1)
+ P(x) chia hết cho x – 3
⇔ P(3) = 0
⇔ m.33 + (m – 2).32 – (3n – 5).3 – 4n = 0
⇔ 27m + 9m – 18 – 9n + 15 – 4n = 0
⇔ 36m – 13n = 3 (2)
Từ (1) và (2) ta có hệ phương trình :
Lời giải:
Áp dụng định lý Bezout về số dư đa thức thì số dư của $P(x)$ khi chia cho $x-1$ và $x+2$ lần lượt là $P(1)$ và $P(-2)$
Có:
\(P(1)=a+a+1-(4b+3)-5b\)
\(P(-2)=-8a+4(a+1)+2(4b+3)-5b\)
Để \(P(x)\vdots x-1; P(x)\vdots x+2\Rightarrow P(1)=P(-2)=0\)
\(\Leftrightarrow \left\{\begin{matrix} 2a-9b-2=0\\ -4a+3b+10=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2a-9b=2\\ -4a+3b=-10\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{14}{5}\\ b=\frac{2}{5}\end{matrix}\right.\)
bn đặt tính chia đa thức, tìm ra số dư rồi cho số dư = 0 là tìm được m
\(\dfrac{H\left(x\right)}{x-1}=\dfrac{ax^3+ax^2+x^2-4bx-3x+5b}{x-1}\)
\(=\dfrac{ax^3-ax^2+x^2\cdot\left(2a+1\right)-2ax-x+\left(2a-4b-2\right)x-2a+4b+2+b-2+2a}{x-1}\)
\(=ax^2+x\left(2a+1\right)+\left(2a-4b-2\right)+\dfrac{b+2a-2}{x-1}\)
\(\dfrac{H\left(x\right)}{x+2}\)
\(=\dfrac{ax^3+\left(a+1\right)x^2-\left(4b+3\right)x+5b}{x+2}\)
\(=\dfrac{ax^3+2ax^2+x^2\left(-a+1\right)+x\cdot\left(-2a+2\right)+[-x\left(-2a+2\right)-\left(4b+3\right)x]+5b}{x+2}\)
\(=ax^2+\left(-a+1\right)\cdot x+\dfrac{\left[2ax-2x-4bx-3x\right]+5b}{x+2}\)
\(=ax^2-ax+x+\dfrac{-5x+2ax-4bx-10+4a-8b+10-4a+13b}{x+2}\)
\(=ax^2-ax+x+\left(2a-4b-5\right)+\dfrac{-4a+13b+10}{x+2}\)
Theo đề, ta có hệ:
-4a+13b=-10 và b+2a=2
=>a=6/5; b=-2/5
http://lazi.vn/edu/exercise/biet-rang-da-thuc-px-chia-het-cho-da-thuc-x-a-khi-va-chi-khi-pa-0-hay-tim-cac-gia-tri-cua-m-va-n
Theo bài ta có :
\(P\left(x\right)⋮\left(x-1\right)\) \(\Rightarrow P\left(1\right)=0\)
\(\Leftrightarrow m+m+1-4n-3+5n=0\)
\(\Leftrightarrow2m+n=2\) (1)
Lại có \(P\left(x\right)⋮\left(x+2\right)\Rightarrow P\left(-2\right)=0\)
\(\Leftrightarrow4m+4\left(m+1\right)-\left(4n+3\right).\left(-2\right)+5n=0\)
\(\Leftrightarrow8m+13n=-12\) (2)
Giải hệ (1) và (2) suy ra \(m=\frac{19}{9};n=\frac{-20}{9}\)
\(A\left(x\right)\) đồng thời chia hết \(x+1;x-3\)
\(\Rightarrow A\left(x\right)\) nhận \(x=-1;x=3\) là 2 nghiệm
Thay vào ta được: \(\left\{{}\begin{matrix}\left(m+3\right).\left(-1\right)^2-\left(2n-1\right).\left(-1\right)-1=0\\\left(m+3\right).3^2-\left(2n-1\right).3-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2n=-1\\9m-6n=-29\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m+6n=-3\\9m-6n=-29\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12m=-32\\9m-6n=-29\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-\dfrac{8}{3}\\n=\dfrac{5}{6}\end{matrix}\right.\)