K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

1/ ĐKXĐ : \(x\ne1\)

\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\Leftrightarrow x=\dfrac{7}{19}\left(tm\right)\)

Vậy...

b/ \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) ĐKXĐ : \(x\ne-1\)

\(\Leftrightarrow12-28x=1+x\)

\(\Leftrightarrow11=29x\Leftrightarrow x=\dfrac{11}{29}\) \(\left(tm\right)\)

Vậy....

c/ ĐKXĐ : \(x\ne0\)

\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2x^2-12=2x^2+3x\)

\(\Leftrightarrow3x=-12\Leftrightarrow x=-4\) \(\left(tm\right)\)

Vậy...

4/ ĐKXĐ : \(x\ne-\dfrac{2}{3}\)

\(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)

\(\Leftrightarrow6x^2+4x-3x-2=5\)

\(\Leftrightarrow6x^2+x-7=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=1\end{matrix}\right.\)

Vậy....

5,6 Tương tự nhé !

 

 

1)ĐKXĐ: \(x\ne1\)

Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-9-2x+2=0\)

\(\Leftrightarrow19x-7=0\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\dfrac{7}{19}\)(nhận)

Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)

2) ĐKXĐ: \(x\ne-1\)

Ta có: \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)

\(\Leftrightarrow4\left(3-7x\right)=x+1\)

\(\Leftrightarrow12-28x-x-1=0\)

\(\Leftrightarrow-29x+11=0\)

\(\Leftrightarrow-29x=-11\)

\(\Leftrightarrow x=\dfrac{11}{29}\)

Vậy: \(S=\left\{\dfrac{11}{29}\right\}\)

3) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-12=2x^2+6x\)

\(\Leftrightarrow2x^2-12-2x^2-6x=0\)

\(\Leftrightarrow-6x-12=0\)

\(\Leftrightarrow-6x=12\)

\(\Leftrightarrow x=-2\)

Vậy: S={-2}

7 tháng 1 2023

\(x-\dfrac{\dfrac{x}{3}-\dfrac{3+x}{2}}{4}=\dfrac{x-\dfrac{15-7x}{3}}{4}-2x+3\)

\(<=>4x-\dfrac{x}{3}+\dfrac{3+x}{2}=x-\dfrac{15-7x}{3}-8x+12\)

`<=>24x-2x+3(3+x)=6x-2(15-7x)-48x+72`

`<=>24x-2x+9+3x=6x-30+14x-48x+72`

`<=>53x=33`

`<=>x=33/53`

b)

ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)

Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)

Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)

\(\Leftrightarrow2x^2-14=2x^2+x-10\)

\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(nhận)

Vậy: S={-4}

26 tháng 4 2021

có dấu  mk vik bị lộn nha

27 tháng 4 2021

a) \(\dfrac{2x+3}{-4}\)\(\dfrac{4-x}{-3}\)

=> 3(2x+3)≥4(4-x)

<=> 6x+9≥16-4x

<=> 10x ≥ 7

<=> x ≥\(\dfrac{7}{10}\)

b) \(\dfrac{7x-1}{6}+2x\) ≤ \(\dfrac{16-x}{5}\)=> 5(7x-1) + 30*2x ≤ 6(16-x)<=> 35x - 5 +60x ≤ 96 -6x<=> 101x ≤ 101<=> x ≤ 1    
5 tháng 12 2017

\(\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{x}{2x+3}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\) ( sửa đề )

\(=\left[\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\right].\dfrac{x}{2x+3}\)

\(=\dfrac{x}{2x+3}\)

5 tháng 12 2017

\(=\dfrac{x}{2x+3}\)

19 tháng 12 2020

a)

ĐKXĐ: \(x\ne-4\)

Để A nguyên thì \(3x+21⋮x+4\)

\(\Leftrightarrow3x+12+9⋮x+4\)

mà \(3x+12⋮x+4\)

nên \(9⋮x+4\)

\(\Leftrightarrow x+4\inƯ\left(9\right)\)

\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)

\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)

Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)

b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)

Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)

\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)

\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)

mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)

nên \(7⋮2x-1\)

\(\Leftrightarrow2x-1\inƯ\left(7\right)\)

\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)

hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)

Vậy: \(x\in\left\{1;0;4;-3\right\}\)

15 tháng 11 2021

\(=\dfrac{5+4x+x-3}{7x}\left(x\ne0\right)=\dfrac{5x+2}{7x}\)

15 tháng 11 2021

Cảm ơn nhoa

 

20 tháng 4 2017

1/

Ta có: 6x4 -x3-7x2+x+1=0

<=> 6x4-6x3+5x3-5x2-2x2+2x-x+1=0

<=> 6x3(x-1)+5x2(x-1)-2x(x-1)-(x-1)=0

<=> (x-1) ( 6x3+5x2-2x-1)=0

<=> ( x-1) ( 6x3-3x2+8x2-4x+2x-1)=0

<=> (x-1)\(\left[3x^2\left(2x-1\right)+4x\left(2x-1\right)+\left(2x-1\right)\right]\)=0

<=> (x-1) ( 2x-1) ( 3x2+4x+1)=0

<=> (x-1) ( 2x-1) (3x2+3x+x+1)=0

<=> (x-1) (2x-1) \(\left[3x\left(x+1\right)+\left(x+1\right)\right]\)=0

<=> (x-1)(2x-1)(x+1)(3x+1)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\\x+1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=1\\x=-1\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\x=-1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(S=\left\{\pm1;\dfrac{1}{2};\dfrac{-1}{3}\right\}\)

1 tháng 1 2019

\(6x^4-x^3-7x^2+x+1=0\)

\(\Leftrightarrow6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1=0\)

\(\Leftrightarrow6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+5x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=\dfrac{1}{2}\\x=-\dfrac{1}{3}\end{matrix}\right.\)