Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left[{}\begin{matrix}x=18\\x=-18\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\\ c,\Rightarrow x:\left(-\dfrac{1}{60}\right)=2\Rightarrow-60.x=2\Rightarrow x=-\dfrac{2}{60}=-\dfrac{1}{30}\)
a) \(\left(3x^2+5x-3\right)+\left(x-3x^2-3\right)=0\)
\(\Leftrightarrow6x-6=0\)
\(\Leftrightarrow6x=6\Leftrightarrow x=1\)
b) \(\left(3x^2-5x\right)-\left(3x^2+x-12\right)=0\)
\(\Leftrightarrow3x^2-5x-3x^2-x+12=0\)
\(\Leftrightarrow-6x=-12\Leftrightarrow x=2\)
-2/3x+5/8=-7/12
-2/3x =-7/12-5/8
-2/3x =-29/24
x =-29/24:-2/3
x =-29/16
Học tốt nha bn.
\(\frac{-2}{3}:x+\frac{5}{8}+\frac{-7}{12}\)
\(\frac{-2}{3}:x=\frac{-7}{12}-\frac{5}{8}\)
\(\frac{-2}{3}:x=\frac{-29}{24}\)
\(x=\frac{-2}{3}:\left(\frac{-29}{24}\right)\)
\(x=\frac{16}{29}\)
a: \(M=\left(\dfrac{-3}{7}x^3y\right)\cdot\dfrac{7xy^3}{12}-x^2y^2\cdot\left(-\dfrac{3}{4}x^2y^2\right)\)
\(=\dfrac{-1}{4}x^4y^4+\dfrac{3}{4}x^4y^4\)
\(=\dfrac{1}{2}x^4y^4\)
b: Hệ số là 1/2
Biến là \(x^4;y^4\)
bậc là 4+4=8
c: Thay x=-1 và y=-2 vào M, ta được:
\(M=\dfrac{1}{2}\left(-1\right)^4\cdot\left(-2\right)^4=\dfrac{1}{2}\cdot16=8\)
\(\dfrac{x+3}{12}=\dfrac{3}{x+3}\) (đk: \(x\neq-3\))
\(\Rightarrow\left(x+3\right)\cdot\left(x+3\right)=3\cdot12\)
\(\Rightarrow\left(x+3\right)^2=36\)
\(\Rightarrow\left(x+3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+3=6\\x+3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-9\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{3;-9\right\}\).
\(\dfrac{x+3}{12}=\dfrac{3}{x+3}\\ \Rightarrow\left(x+3\right)\left(x+3\right)=12.3\\ \Rightarrow x^2+6x+9=36\\ \Rightarrow x^2+6x+9-36=0\\ \Rightarrow x^2+6x-27=0\\ \Rightarrow x^2-3x+9x-27=0\\ \Rightarrow x\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x+9\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+9=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\)