Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(5x=7y\Rightarrow\frac{x}{7}=\frac{y}{5}\) và x+2y=51
áp dụng t/c dãy tỷ số = nhau ta có:
\(\frac{x}{7}=\frac{y}{5}=\frac{x+2y}{7+10}=\frac{51}{17}=3\)
\(\Rightarrow\frac{x}{7}=3\Rightarrow x=3.7=21\)
\(\Rightarrow\frac{y}{5}=3\Rightarrow y=3.5=15\)
a) \(2x=5y\)⇒\(x=\dfrac{5}{2}y\)⇒\(xy=\dfrac{5}{2}y^2\)
Thay \(xy=250\), ta có:
\(250=\dfrac{5}{2}y^2\)
⇒\(y^2=100\)⇒\(y=+-10\)
+) \(y=10\text{⇒}x=250:10=25\)
+) \(y=-10\text{⇒}x=250:-10=-25\)
\(a,2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=k\\ \Rightarrow x=5k;y=2k\\ xy=250\Rightarrow5k\cdot2k=250\Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=25;y=10\\x=-25;y=-10\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}=a\Rightarrow x=3a;y=2a;z=4a\\ xyz=192\Rightarrow24a^3=192\Rightarrow a^3=8\Rightarrow a=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=4\\z=8\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=q\Rightarrow x=5q;y=2q;z=-3q\\ xyz=240\Rightarrow-30q^3=240\Rightarrow q^3=-8\Rightarrow q=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-10\\y=-4\\z=6\end{matrix}\right.\)
a,7x=5y
=x/5=y/7
=x+y/5+7
=24/12
=2
b,x/2=y/3=z/5
=(x/2)3=(y/3)3=(z/5)3
=xyz/2.3.5
=-30/30
=-1
c,6x=4y=3z
=6x/12=4y/12=3z/12
=x/2=y/3=z/4
=x+y+z/2+3+4
=18/9
=2
k mik nha bn ^_^
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=\dfrac{x.y.z}{5.2.-3}=\dfrac{240}{-30}=-8\)
\(\Rightarrow\dfrac{x}{5}=-8\Rightarrow x=-8.5=-40\)
\(\Rightarrow\dfrac{y}{2}=-8\Rightarrow y=-8.2=-16\)
\(\Rightarrow\dfrac{z}{-3}=-8\Rightarrow z=-8.-3=24\)
Vậy \(x=--40;y=-16\) và \(z=24\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x^3-y^3+z^3}{3^3-4^3+2^3}=\dfrac{-29}{-29}=1\)
\(\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3.1=3\)
\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=1.4=4\)
\(\Rightarrow\dfrac{z}{2}=1\Rightarrow z=1.2=2\)
Vậy \(x=3;y=4\) và \(z=2\)
Phân thức số 2 có thật sự là $\frac{z}{y-2}$ không bạn? Bạn xem lại đề.
Đặt: \(k=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow k^3=\frac{xyz}{3.4.5}=\frac{1620}{60}=27\)
=> k = 3
Nên \(\frac{x}{3}=3\Rightarrow x=9\)
\(\frac{y}{4}=3\Rightarrow y=12\)
\(\frac{z}{5}=3\Rightarrow z=15\)
Vậy x = 9 , y = 12 , z = 15
a)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Leftrightarrow x=3k;y=4k;z=5k\)và \(xyz=1620\)
\(\Rightarrow3k.4k.5k=1620\Leftrightarrow60k^3=1620\)
\(\Rightarrow k=\sqrt[3]{1620:60}=3\)
\(\hept{\begin{cases}\frac{x}{3}=3\Rightarrow x=3.3=9\\\frac{y}{4}=3\Rightarrow y=3.4=12\\\frac{z}{5}=3\Rightarrow z=3.5=15\end{cases}}\)
Vậy \(x=9;y=12;z=15\)
b)
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{6}\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\) và \(x+y+z=334\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{18}=\frac{x+y+z}{10+15+18}=\frac{334}{43}\)
\(\hept{\begin{cases}\frac{x}{10}=\frac{334}{43}\Rightarrow x=\frac{334}{43}.10=\frac{3340}{43}\\\frac{y}{15}=\frac{334}{43}\Rightarrow y=\frac{334}{43}.15=\frac{5010}{43}\\\frac{z}{18}=\frac{334}{43}\Rightarrow z=\frac{334}{43}.18=\frac{6012}{43}\end{cases}}\)
Vậy \(x=\frac{3340}{43};y=\frac{5010}{43};z=\frac{6012}{43}\)
Hokk liên quan nhg kb hum>3
Đặt : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}}\)
Thay vào : \(x.y.z=24\)ta có :
\(2k.3k.4k=24\)
\(24.k^3=24\)
\(k^3=1\)
\(k^3=1^3\)
\(k=1\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=2.1=2\\y=3.1=3\\z=4.1=4\end{cases}}\)