Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
Giúp luôn Đức Hải Nguyễn câu e:
e, (x - 1)2 + 2(x - 1)(x + 2) + (x + 2)2 = 0
\(\Leftrightarrow\) (x - 1 + x + 2)2 = 0
\(\Leftrightarrow\) (2x + 1)2 = 0
\(\Leftrightarrow\) 2x + 1 = 0
\(\Leftrightarrow\) x = \(\frac{-1}{2}\)
Vậy S = {\(\frac{-1}{2}\)}
Chúc bn học tốt!!
a) (x - 3)(5 - 2x) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\5-2x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\\x=\frac{5}{2}\end{matrix}\right.\)
b) (x + 5)(x - 1) - 2x(x - 1) = 0
<=> (x - 1)(x + 5 - 2x) = 0
<=> (x - 1)(5 - x) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
c) 5(x + 3)(x - 2) - 3(x + 5)(x - 2) = 0
<=> (x - 2)[5(x + 3) - 3(x + 5)] = 0
<=> (x - 2)(5x + 3 - 3x - 15) = 0
<=> (x - 2)(2x - 12) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\2x-12=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
d) (x - 6)(x + 1) - 2(x + 1) = 0
<=> (x + 1)(x - 6 - 2) = 0
<=> (x + 1)(x - 8) = 0
<=> \(\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)
Câu e thì để mình nghĩ đã :)
#Học tốt!
\(2x^2-6x=0\)
\(\Rightarrow2x.\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}.\)
\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)
\(x^3-16x=0\)
\(\Rightarrow x.\left(x^2-16\right)=0\)
\(\Rightarrow x.\left(x^2-4^2\right)=0\)
\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy \(x\in\left\{0;4;-4\right\}.\)
Chúc bạn học tốt!
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
1.
\(\left(x-5\right)^2+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5+3\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
2.
\(\left(x^2-9\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
3.
\(\left(2x+1\right)^2+\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right).3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
4.
\(\left(x-1\right)\left(x+3\right)+\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
1, x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 4)(x - 5) = 0
=> x - 4 = 0 hoặc x - 5 = 0
=> x = 4 hoặc x = 5
=> x thuộc {4; 5}
2, 3(x + 1) + x(x + 1)
= (3 + x)(x + 1)
3, 2x3 + x = 0
=> x(2x2 + 1) = 0
=> x = 0 hoặc 2x2 + 1 = 0
=> x = 0 hoặc 2x2 = -1
=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x = 0
4, x3 - 16x = 0
=> x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
=> x = 0 hoặc x2 = 16
=> x = 0 hoặc x = 4 hoặc x = -4
=> x thuộc {-4; 0; 4}
5, x2 + 6x = -9
=> x2 + 6x + 9 = 0
=> x2 + 2.3.x + 32 = 0
=> (x + 3)2 = 0
=> x + 3 = 0
=> x = -3
6, x4 - 2x3 + 10x2 - 20x = 0
=> x2(x2 + 10) - 2x(x2 + 10) = 0
=> (x2 + 2x)(x2 + 10) = 0
=> x(x +2)(x2 + 10) = 0
-TH1: x = 0
-TH2: x + 2 = 0 => x = -2
-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)
=> x thuộc {0; -2}
7, (2x - 3)2 = (x + 5)2
-TH1: 2x - 3 = x + 5
=> x = 8
- TH2: - 2x + 3 = x + 5
=> -3x = 2
=> x = \(\frac{-2}{3}\)
- TH3: 2x - 3 = - x - 5
=> 3x = -2
=> x = \(\frac{-2}{3}\)
- TH4: - 2x + 3 = - x - 5
=> -x = -8
=> x = 8`
=> x thuộc {\(\frac{-2}{3}\); 8}
a: \(\Leftrightarrow x^2+6x+9+x^2-4-2x-2=7\)
\(\Leftrightarrow2x^2+4x-4=0\)
\(\Leftrightarrow x^2+2x-2=0\)
\(\Leftrightarrow x^2+2x+1-3=0\)
\(\Leftrightarrow\left(x+1\right)^2=3\)
hay \(x\in\left\{-\sqrt{3}-1;\sqrt{3}-1\right\}\)
b: \(\Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\)
\(\Leftrightarrow2x^2-x-2x^2+x+6=0\)
=>6=0(vô lý)
c: \(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
=>x=-2 hoặc x=2
đ: \(\Rightarrow2x^2-2x-5x+5=0\)
=>(x-1)(2x-5)=0
=>x=1 hoặc x=5/2
...=(x+2)(x+3)+(x+2)(x+5)=(x+2)(x+3+x+5)=(x+2)(2x+8)=2(x+2)(x+4)
Ta có:
A=(x^2 + 5x + 6) - (x^2 + 3x - 10) = 0
= x^2 + 5x + 6 - x^2 - 3x + 10 = 0
= 2x + 16 = 0
= 2x = -16
=> x = -8
Vậy x= -8