K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

trả lời :

undefined pp

^HT^

6 tháng 10 2021

=x3-2xy2+y3+2xy2

ta thay x=1 và y=-2,ta có:

=13-2*1*(-2)+(-2)3+2*1*(-2)2

=1+4-8+8

=5

HOK TỐT ^.^ 

23 tháng 5 2021

a) Thay `x=1/2` vào A được:

`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`

b) Thay `x=2;y=-2` vào B được:

`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.

23 tháng 5 2021

a) Với \(x=\dfrac{1}{2}\) ta được:

\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)

\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)

\(\Rightarrow A=\dfrac{5}{4}\)

 

19 tháng 7 2023

\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)

\(=2x^2-2xy-y^2+2xy\)

\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)

\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(=5x^2-20xy-4y^2+20xy\)

\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)

\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)

\(=-xy\left(x+1\right)\)

19 tháng 7 2023

\(=\dfrac{1}{2}.100\left(100+1\right)=50.101=5050\)

a: \(x^2+x-2x-2\)

\(=x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(x-2\right)=\left(-1+1\right)\left(-1-2\right)=0\)

b: \(3x^2-2x+9x-6\)

\(=x\left(3x-2\right)+3\left(3x-2\right)\)

\(=\left(3x-2\right)\left(x+3\right)=\left(3\cdot7-2\right)\left(7+3\right)\)

\(=19\cdot10=190\)

c: \(2x^2-3xy-xy^2\)

\(=x\left(2x-3y-y^2\right)\)

\(=2\left(2\cdot2-3\cdot3-9\right)\)

\(=2\cdot\left(4-18\right)=-28\)

7 tháng 7 2018

Biểu thức B bạn áp dụng hằng đẳng thức số 6 nhé, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Trong đó a = x, b=3y

7 tháng 7 2018

a ) 

Ta có : 

\(A=\frac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)=\frac{1}{2}x^2y^2\left[\left(2x\right)^2-y^2\right]\)

Thay x = 1 ; y = \(\frac{1}{2}\)vào A , ta được : 

\(A=\frac{1}{2}1^2\left(\frac{1}{2}\right)^2\left[2^2-\left(\frac{1}{2}\right)^2\right]\)

\(\Rightarrow A=\frac{1}{2}.\frac{1}{4}.\frac{15}{4}\)

\(\Rightarrow A=\frac{15}{32}\)

Vậy \(A=\frac{15}{32}\)

b ) 

Ta có : 

\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+\left(3y\right)^3=x^3+27y^3\)

Thay x = 1/2 ; y = 1!/2 = 1/2 , ta được : 

\(\left(\frac{1}{2}\right)^3+27\left(\frac{1}{2}\right)^3\)

\(=\frac{1}{8}+27.\frac{1}{8}\)

\(=\frac{1}{8}.28\)

\(=\frac{7}{2}\)

Vậy \(B=\frac{7}{2}\)

a: A=2/3x^2y+4x^2y=14/3x^2y

=14/3*9*7=294

b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16

c: C=x^3y^3(2+10-20)=-8x^3y^3

=-8*1^3(-1)^3=8

d: D=xy^2(2018+16-2016)

=18xy^2

=18(-2)*1/9=-4

m: (x-y)(x^2-2xy+y^2)

=(x-y)*(x-y)^2

=(x-y)^3

=x^3-3x^2y+3xy^2-y^3

n: =-(x^3+x^2y-x-x^2y-xy^2+y)

=-x^3+x+xy^2-y

o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)

=-x^3-x^2y^2+x^2+2xy+2y^3-2y

p: (1/2x-1)(2x-3)

=1/2x*2x-1/2x*3-2x+3

=x^2-3/2x-2x+3

=x^2-7/2x+3

q: (x-1/2y)(x-1/2y)

=(x-1/2y)^2

=x^2-xy+1/4y^2

r: (x^2-2x+3)(1/2x-5)

=1/2x^3-5x^2-x^2+10x+3/2x-15

=1/2x^3-6x^2+11,5x-15