K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2020

Ta có : \(\hept{\begin{cases}\left|x^2+x-2\right|\ge0\forall x\\\left|x^2-1\right|\ge0\forall x\end{cases}}\Rightarrow\left|x^2+x-2\right|+\left|x^2-1\right|\ge0\forall x\)

Đẳng thức |x2 + x - 2| + |x2 - 1| = 0 xảy ra 

<=> \(\hept{\begin{cases}x^2+x-2=0\\x^2-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+2x-x-2=0\\x^2=1\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+2\right)\left(x-1\right)=0\\x^2=1\end{cases}}\)

+) Nếu : (x + 2)(x - 1) = 0

=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

+) Nếu x2 = 1

=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy  x = 1 

15 tháng 12 2021

\(2\sqrt{a}-a\sqrt{\dfrac{4}{a}}\)

\(=2\sqrt{a}-a.\dfrac{\sqrt{4}}{\sqrt{a}}\)

\(=2\sqrt{a}-a.\dfrac{2}{\sqrt{a}}\)

\(=2\sqrt{a}-2\sqrt{a}\)

\(=0\)

12 tháng 7 2023

a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2

\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)

b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10

Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm

c/ ĐKXĐ: x - 5 >=0 <=> x >= 5

\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)

12 tháng 7 2023

a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\left(tm\right)\)

b) \(\sqrt{x-10}=-2\) 

⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm

c) \(\sqrt{\left(x-5\right)^2}=3\) 

\(\Leftrightarrow\left|x-5\right|=3\)

TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)

Pt trở thành:

\(x-5=3\) (ĐK: \(x\ge5\))

\(\Leftrightarrow x=3+5\)

\(\Leftrightarrow x=8\left(tm\right)\)

TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)

Pt trở thành:

\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))

\(\Leftrightarrow-x+5=3\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(S=\left\{2;8\right\}\)

5 tháng 5 2021

x-4-√x-2=0(x\(\ge\)2,x-4\(\ge\)\(\sqrt{ }\)x-2)

<=>x-4=√x-2

<=>(x-4)^2=x-2

<=>x^2-8x+16=x-2

<=>x^2-8x-x+16+2=0

<=>x^2-9x+18=0

có △=(-9)^2-4.18=9>0

=>x1=(9+√9)/2=6(thỏa mãn)

x2=(9-√9)/2=3(loại)(vì 3-4=-1,-1<1)

=>x=6 

 

 

 

5 tháng 5 2021

điều kiện ấy tui nghĩ là (x≥4) sửa lại hộ

NV
17 tháng 9 2021

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)

\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)

16 tháng 9 2021

a) ĐKXĐ: x <= 2/3

Pt --> 2 - 3x = 4

<=> 3x = -2

<=> x = -2/3 (thỏa)

16 tháng 9 2021

b) ĐKXĐ: x >= 2

Pt --> x^2 + 4x + 4 = x^2 - 4x + 4

<=> 8x = 0<=> x = 0(loại)

4 tháng 10 2020

a) Ta có: \(\left|x-1\right|+\left|x^2+3\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2+3\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2+3\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2+3\right|=0\)

\(\Rightarrow x^2=-3\) => vô lý

Vậy PT vô nghiệm

4 tháng 10 2020

b) Ta có: \(\left|x-1\right|+\left|x^2-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2-1\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2-1\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2-1\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\x^2=1\end{cases}}\Rightarrow x=1\)

Vậy x = 1