Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(P=\frac{x-1}{\left(\sqrt{x}-1\right)\sqrt{x}}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
b) Ta có: \(P>0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\)
\(\Leftrightarrow\frac{\left(x-1\right)\sqrt{x}}{x}>0\)
\(\Rightarrow\left(x-1\right)\sqrt{x}>0\)
\(\Rightarrow\hept{\begin{cases}x-1>0\\\sqrt{x}>0\end{cases}}\Rightarrow x>1\)
Vậy khi \(x>1\Leftrightarrow P>0\)
c) Ta có: \(P=6\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}=6\)
\(\Leftrightarrow x-1=6\sqrt{x}\)
\(\Leftrightarrow\left(x-1\right)^2=36x\)
\(\Leftrightarrow x^2-38x+1=0\)
\(\Leftrightarrow\left(x^2-38x+361\right)-360=0\)
\(\Leftrightarrow\left(x-19\right)^2-\left(6\sqrt{10}\right)^2=0\)
\(\Leftrightarrow\left(x-19-6\sqrt{10}\right)\left(x-19+6\sqrt{10}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-19-6\sqrt{10}=0\\x-19+6\sqrt{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=19+6\sqrt{10}\\x=19-6\sqrt{10}\end{cases}}\)
\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
ĐK : a >= 0 , a khác 1
\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)
a) Rut gon H
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)
DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)
Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)
a: \(A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=4-2\sqrt{3}\) vào A, ta được:
\(A=\dfrac{2\left(\sqrt{3}-1\right)-1}{\sqrt{3}-1+1}=\dfrac{2\sqrt{3}-3}{\sqrt{3}}=2-\sqrt{3}\)
c: Để A=1/2 thì \(4\sqrt{x}-2=\sqrt{x}+1\)
=>x=1(loại)
a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}\)
(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))
\(=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\left(x+2\right)+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\)
\(M=\dfrac{1}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)
Dấu "=" xảy ra khi x = 0
Cảm ơn nhé! Nhưng tớ làm ra câu a,b rồi :( cậu biết làm c,d không?
a: Sửa đề: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{x-1}+4\sqrt{x}\right):\dfrac{x-1}{\sqrt{x}}\)
\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{x-1}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4\sqrt{x}\left(1+x-1\right)}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}=\dfrac{4x^2}{\left(x-1\right)^2}\)
b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow4x^2-2x^2+4x-2=0\)
\(\Leftrightarrow2x^2+4x-2=0\)
\(\Leftrightarrow x^2+2x-1=0\)
\(\Leftrightarrow\left(x+1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{2}\\x+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(nhận\right)\\x=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)
c: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
Thay x=2 vào E, ta được:
\(E=\dfrac{4\cdot2^2}{\left(2-1\right)^2}=16\)
a: \(=\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4\sqrt{a}\left(a-1\right)}{a-1}\cdot\dfrac{1}{a\sqrt{a}}\)
\(=\dfrac{4\sqrt{a}\left(a-1+1\right)}{a-1}\cdot\dfrac{1}{a\sqrt{a}}=\dfrac{4}{a-1}\)
b: Khi a=2căn 2+1 thì \(A=\dfrac{4}{2\sqrt{2}+1-1}=\sqrt{2}\)
\(2\sqrt{a}-a\sqrt{\dfrac{4}{a}}\)
\(=2\sqrt{a}-a.\dfrac{\sqrt{4}}{\sqrt{a}}\)
\(=2\sqrt{a}-a.\dfrac{2}{\sqrt{a}}\)
\(=2\sqrt{a}-2\sqrt{a}\)
\(=0\)