K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

ap dung bdt \(x^{m+n}+y^{m+n}\ge x^my^n+x^ny^m\)  (bn tu cm )

\(\Rightarrow x^7+y^7=x^{3+4}+y^{3+4}\ge x^3y^4+x^4y^3\)

\(\Rightarrow\frac{x^2y^2}{x^2y^2+x^7+y^7}\le\frac{x^2y^2}{x^2y^2\left(1+xy^2+x^2y\right)}=\frac{1}{1+x^2y+y^2x}=\frac{1}{xyz+x^2y+y^2x}=\frac{1}{xy\left(x+y+z\right)}=\)

=\(\frac{z}{xyz\left(x+y+z\right)}=\frac{z}{x+y+z}\)

ttu \(P\le\frac{x+y+z}{x+y+z}=1\) đầu = xảy ra khi x=y=z=1

=>\(7-x+2\sqrt{x}=\left(2+\sqrt{x}\right)\sqrt{7-x}\)

\(\Leftrightarrow\sqrt{\left(7-x\right)^2}+2\sqrt{x}=2\sqrt{7-x}+\sqrt{x}\cdot\sqrt{7-x}\)

=>\(\sqrt{7-x}\cdot\left(\sqrt{7-x}-\sqrt{x}\right)=2\left(\sqrt{7-x}-\sqrt{x}\right)\)

=>7-x=4

=>x=3

7 tháng 7 2021

Có \(x+y=7+4\sqrt{3}+7-4\sqrt{3}=14\)

\(xy=\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)=1\)

\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2=194\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)

\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)\(=2702\left[\left(x^2+y^2\right)^2-2x^2y^2\right]-14\)

\(=2702\left(194^2-2\right)-14=101687054\)

Vậy...

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

a: \(\dfrac{x^2-7}{x+\sqrt{7}}=x-\sqrt{7}\)

b: \(\dfrac{x^2-5}{x-\sqrt{5}}=x+\sqrt{5}\)

NV
6 tháng 7 2021

\(x+y=14\) ; \(xy=\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)=1\)

\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2.1=194\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=194^2-2.1^2=37634\)

\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=2702.37634-1^3.14=...\)

Đk: `1 <=x <=7`.

Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.

Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.

`<=> b^2 + 2a = 2b + ab.`

`<=> b(b-2) = a(b-2)`

`<=> (b-a)(b-2) = 0`

`<=> a =b` hoặc `b = 2.`

`@ a = b => 7 - x = x - 1`

`<=> 8 = 2x <=> x = 4`.

`@ b = 2 => sqrt(x-1) = 2`

`<=> x - 1 = 4`

`<=> x = 5`.

Vậy `x = 4` hoặc `x = 5`.

\(\text{ĐKXĐ:}1\le x\le7\)

PT đã cho tương đương với:

\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)