x2-3x+4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TT
11 tháng 5 2024

4x23x+4

x2−3x+4=0x23x+4=0

<=>x2+1x−4x−4=0<=>x2+1x4x4=0

<=>x(x+1)−4(x+1)=0<=>x(x+1)4(x+1)=0

<=>x=4;−1<=>x=4;1

Vậy ...

28 tháng 11 2021

g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)

f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)

e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

21 tháng 10 2021

\(\left(x+5\right)\left(x^2-5x+25\right)\)

\(=\left(x+5\right)\left(x^2-5.x+5^2\right)\)

\(=x^3+5^3\)

\(=x^3+125\)

21 tháng 10 2021

3) \(27-y^3\)

\(=3^3-y^3\)

\(=\left(3-y\right)\left(9-3y+y^2\right)\)

24 tháng 8 2021

Trả lời:

a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)

b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)

\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)

\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)

NM
24 tháng 8 2021

a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)

b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)

27 tháng 8 2021

Mới tìm ra đáp án ý a thôi nhaaa !!!

undefined

27 tháng 8 2021

a) Theo định lí Bezout ta có:

\(f\left(-5\right)=3.\left(-5\right)^2-5a+27=2\)

\(\Leftrightarrow75-5a+27=2\)

\(\Leftrightarrow102-5a=2\)

\(\Rightarrow a=20\)

b) \(x^3+ax^2+x+b=\left(x^2-x+2\right).\left(x+m\right)\)(Trong đó m là số nguyên)

\(\Leftrightarrow x^3+ax^2+x+b=x^3+x^2.\left(m-1\right)-mx+2m\)

Sử dụng phương pháp đồng nhất hệ số ta có:

\(\hept{\begin{cases}ax^2=m-1\\x=-mx\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=m-1\\m=-1\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-2\end{cases}}\Leftrightarrow a=b=-2\)

29 tháng 7 2021

Bài 209 : đăng tách ra cho mn cùng làm nhé 

a,sửa đề :  \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)

b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)

c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)

\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)