K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

C

7 tháng 11 2021

c

14 tháng 10 2023

B, C và D

14 tháng 10 2023

mấy cái đó là đúng hả bạn

 

5 tháng 8 2021

giups mình với nha

 

21 tháng 1 2022

\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)

b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24

17 tháng 9 2021

a) \(\left(a^2+b+c\right)^2\)

\(=\left(a^2+b\right)^2+2\left(a^2+b\right)c+c^2\)

\(=a^4+2a^2b+b^2+2a^2c+2bc+c^2\)

b) \(\left(a+b+c\right)^2\)

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ca+2bc+c^2\)

17 tháng 9 2021

a) (a^2+b+c)^2(a^2+b+c)^2

=(a^2+b)^2+2(a^2+b)c+c^2

=a^4+2a2b+b^2+2a2c+2bc+c^2

b) (a+b+c)^2(a+b+c)^2

=(a+b)^2+2(a+b)c+c^2

=a^2+2ab+b^2+2ca+2bc+c^2

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3

\(A^2=3940+2\cdot\sqrt{1970^2-1}\)

\(B^2=3940+2\cdot\sqrt{1970^2}\)

mà \(1970^2-1< 1970^2\)

nên A<B

27 tháng 9 2021

Còn thêm cách nào khác ko ạ? Nếu có thì giúp em nha. Cảm ơn anh nhiều!

30 tháng 9 2018

a) Biến đổi  x 2 – 2x + 1 = ( x   –   1 ) 2 ; thực hiện chia được kết quả x – 1.

b) Biến đổi 8 x 3  + 27 = (2x + 3)(4 x 2  – 6x + 9); thực hiện phép chia được kết quả 4 x 2  – 6x + 9.

c) Phân thích x 6   –   6 x 4  + 12 x 2  – 8 = ( x 2 – 2)( x 4  – 4 x 2  + 4); thực hiện phép chia được kết quả - x 4  + 4 x 2  – 4.

23 tháng 10 2023

Câu 1. D

Câu 4. A, C

Câu 5. Xem lại đề!

23 tháng 10 2023

tui gõ chưa xong lỡ ấn enter á . bạn xem lại giúp mik vs